mirror of https://github.com/explosion/spaCy.git
Update processing-pipelines.md to mention method for doc metadata (#7480)
* Update processing-pipelines.md Under "things to try," inform users they can save metadata when using nlp.pipe(foobar, as_tuples=True) Link to a new example on the attributes page detailing the following: > ``` > data = [ > ("Some text to process", {"meta": "foo"}), > ("And more text...", {"meta": "bar"}) > ] > > for doc, context in nlp.pipe(data, as_tuples=True): > # Let's assume you have a "meta" extension registered on the Doc > doc._.meta = context["meta"] > ``` from https://stackoverflow.com/questions/57058798/make-spacy-nlp-pipe-process-tuples-of-text-and-additional-information-to-add-as * Updating the attributes section Update the attributes section with example of how extensions can be used to store metadata. * Update processing-pipelines.md * Update processing-pipelines.md Made as_tuples example executable and relocated to the end of the "Processing Text" section. * Update processing-pipelines.md * Update processing-pipelines.md Removed extra line * Reformat and rephrase Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
This commit is contained in:
parent
0e7f94b247
commit
df541c6b5e
|
@ -91,6 +91,37 @@ have to call `list()` on it first:
|
|||
|
||||
</Infobox>
|
||||
|
||||
You can use the `as_tuples` option to pass additional context along with each
|
||||
doc when using [`nlp.pipe`](/api/language#pipe). If `as_tuples` is `True`, then
|
||||
the input should be a sequence of `(text, context)` tuples and the output will
|
||||
be a sequence of `(doc, context)` tuples. For example, you can pass metadata in
|
||||
the context and save it in a [custom attribute](#custom-components-attributes):
|
||||
|
||||
```python
|
||||
### {executable="true"}
|
||||
import spacy
|
||||
from spacy.tokens import Doc
|
||||
|
||||
if not Doc.has_extension("text_id"):
|
||||
Doc.set_extension("text_id", default=None)
|
||||
|
||||
text_tuples = [
|
||||
("This is the first text.", {"text_id": "text1"}),
|
||||
("This is the second text.", {"text_id": "text2"})
|
||||
]
|
||||
|
||||
nlp = spacy.load("en_core_web_sm")
|
||||
doc_tuples = nlp.pipe(text_tuples, as_tuples=True)
|
||||
|
||||
docs = []
|
||||
for doc, context in doc_tuples:
|
||||
doc._.text_id = context["text_id"]
|
||||
docs.append(doc)
|
||||
|
||||
for doc in docs:
|
||||
print(f"{doc._.text_id}: {doc.text}")
|
||||
```
|
||||
|
||||
### Multiprocessing {#multiprocessing}
|
||||
|
||||
spaCy includes built-in support for multiprocessing with
|
||||
|
@ -1373,6 +1404,8 @@ There are three main types of extensions, which can be defined using the
|
|||
[`Span.set_extension`](/api/span#set_extension) and
|
||||
[`Token.set_extension`](/api/token#set_extension) methods.
|
||||
|
||||
## Description
|
||||
|
||||
1. **Attribute extensions.** Set a default value for an attribute, which can be
|
||||
overwritten manually at any time. Attribute extensions work like "normal"
|
||||
variables and are the quickest way to store arbitrary information on a `Doc`,
|
||||
|
|
Loading…
Reference in New Issue