mirror of https://github.com/explosion/spaCy.git
debugging
This commit is contained in:
parent
400b19353d
commit
dd691d0053
|
@ -28,13 +28,16 @@ class EL_Model:
|
|||
|
||||
PRINT_LOSS = False
|
||||
PRINT_F = True
|
||||
PRINT_TRAIN = True
|
||||
EPS = 0.0000000005
|
||||
CUTOFF = 0.5
|
||||
|
||||
INPUT_DIM = 300
|
||||
ENTITY_WIDTH = 64
|
||||
ARTICLE_WIDTH = 128
|
||||
HIDDEN_WIDTH = 64
|
||||
ENTITY_WIDTH = 4 # 64
|
||||
ARTICLE_WIDTH = 8 # 128
|
||||
HIDDEN_WIDTH = 6 # 64
|
||||
|
||||
DROP = 0.00
|
||||
|
||||
name = "entity_linker"
|
||||
|
||||
|
@ -78,40 +81,63 @@ class EL_Model:
|
|||
print()
|
||||
print("Training on", len(train_inst.values()), "articles")
|
||||
print("Dev test on", len(dev_inst.values()), "articles")
|
||||
print()
|
||||
print(" CUTOFF", self.CUTOFF)
|
||||
print(" INPUT_DIM", self.INPUT_DIM)
|
||||
print(" ENTITY_WIDTH", self.ENTITY_WIDTH)
|
||||
print(" ARTICLE_WIDTH", self.ARTICLE_WIDTH)
|
||||
print(" HIDDEN_WIDTH", self.ARTICLE_WIDTH)
|
||||
print(" DROP", self.DROP)
|
||||
print()
|
||||
|
||||
# TODO: proper batches. Currently 1 article at the time
|
||||
article_count = 0
|
||||
for article_id, inst_cluster_set in train_inst.items():
|
||||
# if to_print:
|
||||
# print()
|
||||
# print(article_count, "Training on article", article_id)
|
||||
article_count += 1
|
||||
article_docs = list()
|
||||
entities = list()
|
||||
golds = list()
|
||||
for inst_cluster in inst_cluster_set:
|
||||
article_docs.append(train_doc[article_id])
|
||||
entities.append(train_pos.get(inst_cluster))
|
||||
golds.append(float(1.0))
|
||||
instance_pos_count += 1
|
||||
for neg_entity in train_neg.get(inst_cluster, []):
|
||||
article_docs.append(train_doc[article_id])
|
||||
entities.append(neg_entity)
|
||||
golds.append(float(0.0))
|
||||
instance_neg_count += 1
|
||||
try:
|
||||
# if to_print:
|
||||
# print()
|
||||
# print(article_count, "Training on article", article_id)
|
||||
article_count += 1
|
||||
article_docs = list()
|
||||
entities = list()
|
||||
golds = list()
|
||||
for inst_cluster in inst_cluster_set:
|
||||
if instance_pos_count < 2: # TODO remove
|
||||
article_docs.append(train_doc[article_id])
|
||||
entities.append(train_pos.get(inst_cluster))
|
||||
golds.append(float(1.0))
|
||||
instance_pos_count += 1
|
||||
for neg_entity in train_neg.get(inst_cluster, []):
|
||||
article_docs.append(train_doc[article_id])
|
||||
entities.append(neg_entity)
|
||||
golds.append(float(0.0))
|
||||
instance_neg_count += 1
|
||||
|
||||
self.update(article_docs=article_docs, entities=entities, golds=golds)
|
||||
for k in range(5):
|
||||
print()
|
||||
print("update", k)
|
||||
print()
|
||||
# print("article docs", article_docs)
|
||||
print("entities", entities)
|
||||
print("golds", golds)
|
||||
print()
|
||||
self.update(article_docs=article_docs, entities=entities, golds=golds)
|
||||
|
||||
# dev eval
|
||||
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_inter", avg=False)
|
||||
# dev eval
|
||||
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_inter", avg=False)
|
||||
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_inter_avg", avg=True)
|
||||
except ValueError as e:
|
||||
print("Error in article id", article_id)
|
||||
|
||||
if to_print:
|
||||
print()
|
||||
print("Trained on", instance_pos_count, "/", instance_neg_count, "instances pos/neg")
|
||||
|
||||
print()
|
||||
self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_post", calc_random=False)
|
||||
self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_post", avg=False)
|
||||
self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_post_avg", avg=True)
|
||||
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_post", avg=False)
|
||||
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_post_avg", avg=True)
|
||||
|
||||
def _test_dev(self, instances, pos, neg, doc, print_string, avg=False, calc_random=False):
|
||||
predictions = list()
|
||||
|
@ -155,16 +181,24 @@ class EL_Model:
|
|||
|
||||
def _predict(self, article_doc, entity, avg=False, apply_threshold=True):
|
||||
if avg:
|
||||
with self.sgd.use_params(self.model.averages):
|
||||
doc_encoding = self.article_encoder([article_doc])
|
||||
entity_encoding = self.entity_encoder([entity])
|
||||
return self.model(np.append(entity_encoding, doc_encoding)) # TODO list
|
||||
with self.article_encoder.use_params(self.sgd_article.averages) \
|
||||
and self.entity_encoder.use_params(self.sgd_article.averages):
|
||||
doc_encoding = self.article_encoder([article_doc])[0]
|
||||
entity_encoding = self.entity_encoder([entity])[0]
|
||||
|
||||
else:
|
||||
doc_encoding = self.article_encoder([article_doc])[0]
|
||||
entity_encoding = self.entity_encoder([entity])[0]
|
||||
|
||||
doc_encoding = self.article_encoder([article_doc])[0]
|
||||
entity_encoding = self.entity_encoder([entity])[0]
|
||||
concat_encoding = list(entity_encoding) + list(doc_encoding)
|
||||
np_array = np.asarray([concat_encoding])
|
||||
prediction = self.model(np_array)
|
||||
|
||||
if avg:
|
||||
with self.model.use_params(self.sgd.averages):
|
||||
prediction = self.model(np_array)
|
||||
else:
|
||||
prediction = self.model(np_array)
|
||||
|
||||
if not apply_threshold:
|
||||
return float(prediction)
|
||||
if prediction > self.CUTOFF:
|
||||
|
@ -199,14 +233,17 @@ class EL_Model:
|
|||
>> flatten_add_lengths \
|
||||
>> ParametricAttention(in_width)\
|
||||
>> Pooling(mean_pool) \
|
||||
>> Residual((ExtractWindow(nW=1) >> LN(Maxout(in_width, in_width * 3)))) \
|
||||
>> (ExtractWindow(nW=1) >> LN(Maxout(in_width, in_width * 3))) \
|
||||
>> zero_init(Affine(hidden_width, in_width, drop_factor=0.0))
|
||||
|
||||
# TODO: ReLu instead of LN(Maxout) ?
|
||||
# TODO: more convolutions ?
|
||||
|
||||
return encoder
|
||||
|
||||
def _begin_training(self):
|
||||
self.sgd_article = create_default_optimizer(self.article_encoder.ops)
|
||||
self.sgd_entity = create_default_optimizer(self.entity_encoder.ops)
|
||||
self.sgd = create_default_optimizer(self.model.ops)
|
||||
|
||||
@staticmethod
|
||||
|
@ -216,34 +253,49 @@ class EL_Model:
|
|||
loss = (d_scores ** 2).sum()
|
||||
return loss, d_scores
|
||||
|
||||
def update(self, article_docs, entities, golds, drop=0., apply_threshold=True):
|
||||
doc_encodings, bp_doc = self.article_encoder.begin_update(article_docs, drop=drop)
|
||||
entity_encodings, bp_encoding = self.entity_encoder.begin_update(entities, drop=drop)
|
||||
def update(self, article_docs, entities, golds, apply_threshold=True):
|
||||
print("article_docs", len(article_docs))
|
||||
for a in article_docs:
|
||||
print(a[0:10], a[-10:])
|
||||
doc_encoding, bp_doc = self.article_encoder.begin_update([a], drop=self.DROP)
|
||||
print(doc_encoding)
|
||||
|
||||
doc_encodings, bp_doc = self.article_encoder.begin_update(article_docs, drop=self.DROP)
|
||||
entity_encodings, bp_encoding = self.entity_encoder.begin_update(entities, drop=self.DROP)
|
||||
concat_encodings = [list(entity_encodings[i]) + list(doc_encodings[i]) for i in range(len(entities))]
|
||||
|
||||
predictions, bp_model = self.model.begin_update(np.asarray(concat_encodings), drop=drop)
|
||||
print("doc_encodings", len(doc_encodings), doc_encodings)
|
||||
print("entity_encodings", len(entity_encodings), entity_encodings)
|
||||
print("concat_encodings", len(concat_encodings), concat_encodings)
|
||||
|
||||
predictions, bp_model = self.model.begin_update(np.asarray(concat_encodings), drop=self.DROP)
|
||||
print("predictions", predictions)
|
||||
predictions = self.model.ops.flatten(predictions)
|
||||
golds = self.model.ops.asarray(golds)
|
||||
|
||||
loss, d_scores = self.get_loss(predictions, golds)
|
||||
|
||||
# if self.PRINT_LOSS:
|
||||
# print("loss train", round(loss, 5))
|
||||
if self.PRINT_LOSS and self.PRINT_TRAIN:
|
||||
print("loss train", round(loss, 5))
|
||||
|
||||
# if self.PRINT_F:
|
||||
# predictions_f = [x for x in predictions]
|
||||
# if apply_threshold:
|
||||
# predictions_f = [1.0 if x > self.CUTOFF else 0.0 for x in predictions_f]
|
||||
# p, r, f = run_el.evaluate(predictions_f, golds, to_print=False)
|
||||
# print("p/r/F train", round(p, 1), round(r, 1), round(f, 1))
|
||||
if self.PRINT_F and self.PRINT_TRAIN:
|
||||
predictions_f = [x for x in predictions]
|
||||
if apply_threshold:
|
||||
predictions_f = [1.0 if x > self.CUTOFF else 0.0 for x in predictions_f]
|
||||
p, r, f = run_el.evaluate(predictions_f, golds, to_print=False)
|
||||
print("p/r/F train", round(p, 1), round(r, 1), round(f, 1))
|
||||
|
||||
d_scores = d_scores.reshape((-1, 1))
|
||||
d_scores = d_scores.astype(np.float32)
|
||||
print("d_scores", d_scores)
|
||||
|
||||
model_gradient = bp_model(d_scores, sgd=self.sgd)
|
||||
print("model_gradient", model_gradient)
|
||||
|
||||
doc_gradient = [x[0:self.ARTICLE_WIDTH] for x in model_gradient]
|
||||
print("doc_gradient", doc_gradient)
|
||||
entity_gradient = [x[self.ARTICLE_WIDTH:] for x in model_gradient]
|
||||
print("entity_gradient", entity_gradient)
|
||||
|
||||
bp_doc(doc_gradient)
|
||||
bp_encoding(entity_gradient)
|
||||
|
|
|
@ -111,7 +111,7 @@ if __name__ == "__main__":
|
|||
print("STEP 6: training", datetime.datetime.now())
|
||||
my_nlp = spacy.load('en_core_web_md')
|
||||
trainer = EL_Model(kb=my_kb, nlp=my_nlp)
|
||||
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=2000, devlimit=200)
|
||||
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=1, devlimit=10)
|
||||
print()
|
||||
|
||||
# STEP 7: apply the EL algorithm on the dev dataset
|
||||
|
|
|
@ -293,7 +293,7 @@ class Tensorizer(Pipe):
|
|||
|
||||
docs (iterable): A batch of `Doc` objects.
|
||||
golds (iterable): A batch of `GoldParse` objects.
|
||||
drop (float): The droput rate.
|
||||
drop (float): The dropout rate.
|
||||
sgd (callable): An optimizer.
|
||||
RETURNS (dict): Results from the update.
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue