Update and fix lightning tour examples

This commit is contained in:
ines 2017-05-25 11:15:56 +02:00
parent 4b5540cc63
commit dcb10da615
1 changed files with 32 additions and 18 deletions

View File

@ -101,15 +101,15 @@ p
doc_dep = nlp(u'This is a sentence.')
displacy.serve(doc_dep, style='dep')
doc_ent = nlp(u'When Sebastian Thrun started working on self-driving cars at '
u'Google in 2007, few people outside of the company took him seriously.')
doc_ent = nlp(u'When Sebastian Thrun started working on self-driving cars at Google '
u'in 2007, few people outside of the company took him seriously.')
displacy.serve(doc_ent, style='ent')
+infobox
| #[strong API:] #[+api("displacy") #[code displacy]]
| #[strong Usage:] #[+a("/docs/usage/visualizers") Visualizers]
+h(2, "examples-word-vectors") Word vectors
+h(2, "examples-word-vectors") Get word vectors and similarity
+tag-model("word vectors")
+code.
@ -119,6 +119,7 @@ p
pasta = doc[6]
hippo = doc[8]
assert apple.similarity(banana) > pasta.similarity(hippo)
assert apple.has_vector, banana.has_vector, pasta.has_vector, hippo.has_vector
+infobox
| #[strong Usage:] #[+a("/docs/usage/word-vectors-similarities") Word vectors and similarity]
@ -139,6 +140,23 @@ p
+infobox
| #[strong Usage:] #[+a("/docs/usage/saving-loading") Saving and loading]
+h(2, "rule-matcher") Match text with token rules
+code.
import spacy
from spacy.matcher import Matcher
nlp = spacy.load('en')
matcher = Matcher(nlp.vocab)
# match "Google I/O" or "Google i/o"
pattern = [{'ORTH': 'Google'}, {'UPPER': 'I'}, {'ORTH': '/'}, {'UPPER': 'O'}]
matcher.add('GoogleIO', None, pattern)
matches = nlp(LOTS_OF TEXT)
+infobox
| #[strong API:] #[+api("matcher") #[code Matcher]]
| #[strong Usage:] #[+a("/docs/usage/rule-based-matching") Rule-based matching]
+h(2, "multi-threaded") Multi-threaded generator
+code.
@ -183,28 +201,24 @@ p
assert doc[0].like_url == doc_array[0, 1]
assert list(doc_array[:, 1]) == [t.like_url for t in doc]
+h(2, "examples-inline") Calculate inline mark-up on original string
+h(2, "examples-inline") Calculate inline markup on original string
+code.
def put_spans_around_tokens(doc, get_classes):
'''Given some function to compute class names, put each token in a
span element, with the appropriate classes computed.
All whitespace is preserved, outside of the spans. (Yes, I know HTML
won't display it. But the point is no information is lost, so you can
calculate what you need, e.g. <br /> tags, <p> tags, etc.)
'''
"""Given some function to compute class names, put each token in a
span element, with the appropriate classes computed. All whitespace is
preserved, outside of the spans. (Of course, HTML won't display more than
one whitespace character it but the point is, no information is lost
and you can calculate what you need, e.g. &lt;br /&gt;, &lt;p&gt; etc.)
"""
output = []
template = '<span classes="{classes}">{word}</span>{space}'
html = '&lt;span class="{classes}"&gt;{word}&lt;/span&gt;{space}'
for token in doc:
if token.is_space:
output.append(token.orth_)
output.append(token.text)
else:
output.append(
template.format(
classes=' '.join(get_classes(token)),
word=token.orth_,
space=token.whitespace_))
classes = ' '.join(get_classes(token))
output.append(html.format(classes=classes, word=token.text, space=token.whitespace_))
string = ''.join(output)
string = string.replace('\n', '')
string = string.replace('\t', ' ')