mirror of https://github.com/explosion/spaCy.git
Adding and updating content in the spacy universe (#10493)
* signing contributor agreement * adding new content to the spaCy universe * updating outdated example codes * resolving issues for the PR * resolve review for klayers * remove contributor-agreement file from the PR * Update code example of spaCySentiWS Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Update spacy-sentiws code example Co-authored-by: schaeran <schaeran1994@gmail.com> Co-authored-by: schaeran <schaeran@explosion.ai> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
This commit is contained in:
parent
4e1716223c
commit
d622883a42
|
@ -1,5 +1,69 @@
|
|||
{
|
||||
"resources": [
|
||||
{
|
||||
"id": "scrubadub_spacy",
|
||||
"title": "scrubadub_spacy",
|
||||
"category": ["pipeline"],
|
||||
"slogan": "Remove personally identifiable information from text using spaCy.",
|
||||
"description": "scrubadub removes personally identifiable information from text. scrubadub_spacy is an extension that uses spaCy NLP models to remove personal information from text.",
|
||||
"github": "LeapBeyond/scrubadub_spacy",
|
||||
"pip": "scrubadub-spacy",
|
||||
"url": "https://github.com/LeapBeyond/scrubadub_spacy",
|
||||
"code_language": "python",
|
||||
"author": "Leap Beyond",
|
||||
"author_links": {
|
||||
"github": "https://github.com/LeapBeyond",
|
||||
"website": "https://leapbeyond.ai"
|
||||
},
|
||||
"code_example": [
|
||||
"import scrubadub, scrubadub_spacy",
|
||||
"scrubber = scrubadub.Scrubber()",
|
||||
"scrubber.add_detector(scrubadub_spacy.detectors.SpacyEntityDetector)",
|
||||
"print(scrubber.clean(\"My name is Alex, I work at LifeGuard in London, and my eMail is alex@lifeguard.com btw. my super secret twitter login is username: alex_2000 password: g-dragon180888\"))",
|
||||
"# My name is {{NAME}}, I work at {{ORGANIZATION}} in {{LOCATION}}, and my eMail is {{EMAIL}} btw. my super secret twitter login is username: {{USERNAME}} password: {{PASSWORD}}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": "spacy-setfit-textcat",
|
||||
"title": "spacy-setfit-textcat",
|
||||
"category": ["research"],
|
||||
"tags": ["SetFit", "Few-Shot"],
|
||||
"slogan": "spaCy Project: Experiments with SetFit & Few-Shot Classification",
|
||||
"description": "This project is an experiment with spaCy and few-shot text classification using SetFit",
|
||||
"github": "pmbaumgartner/spacy-setfit-textcat",
|
||||
"url": "https://github.com/pmbaumgartner/spacy-setfit-textcat",
|
||||
"code_language": "python",
|
||||
"author": "Peter Baumgartner",
|
||||
"author_links": {
|
||||
"twitter" : "https://twitter.com/pmbaumgartner",
|
||||
"github": "https://github.com/pmbaumgartner",
|
||||
"website": "https://www.peterbaumgartner.com/"
|
||||
},
|
||||
"code_example": [
|
||||
"https://colab.research.google.com/drive/1CvGEZC0I9_v8gWrBxSJQ4Z8JGPJz-HYb?usp=sharing"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": "spacy-experimental",
|
||||
"title": "spacy-experimental",
|
||||
"category": ["extension"],
|
||||
"slogan": "Cutting-edge experimental spaCy components and features",
|
||||
"description": "This package includes experimental components and features for spaCy v3.x, for example model architectures, pipeline components and utilities.",
|
||||
"github": "explosion/spacy-experimental",
|
||||
"pip": "spacy-experimental",
|
||||
"url": "https://github.com/explosion/spacy-experimental",
|
||||
"code_language": "python",
|
||||
"author": "Explosion",
|
||||
"author_links": {
|
||||
"twitter" : "https://twitter.com/explosion_ai",
|
||||
"github": "https://github.com/explosion",
|
||||
"website": "https://explosion.ai/"
|
||||
},
|
||||
"code_example": [
|
||||
"python -m pip install -U pip setuptools wheel",
|
||||
"python -m pip install spacy-experimental"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": "spacypdfreader",
|
||||
"title": "spadypdfreader",
|
||||
|
@ -327,15 +391,20 @@
|
|||
"pip": "spaczz",
|
||||
"code_example": [
|
||||
"import spacy",
|
||||
"from spaczz.pipeline import SpaczzRuler",
|
||||
"from spaczz.matcher import FuzzyMatcher",
|
||||
"",
|
||||
"nlp = spacy.blank('en')",
|
||||
"ruler = SpaczzRuler(nlp)",
|
||||
"ruler.add_patterns([{'label': 'PERSON', 'pattern': 'Bill Gates', 'type': 'fuzzy'}])",
|
||||
"nlp.add_pipe(ruler)",
|
||||
"nlp = spacy.blank(\"en\")",
|
||||
"text = \"\"\"Grint Anderson created spaczz in his home at 555 Fake St,",
|
||||
"Apt 5 in Nashv1le, TN 55555-1234 in the US.\"\"\" # Spelling errors intentional.",
|
||||
"doc = nlp(text)",
|
||||
"",
|
||||
"doc = nlp('Oops, I spelled Bill Gatez wrong.')",
|
||||
"print([(ent.text, ent.start, ent.end, ent.label_) for ent in doc.ents])"
|
||||
"matcher = FuzzyMatcher(nlp.vocab)",
|
||||
"matcher.add(\"NAME\", [nlp(\"Grant Andersen\")])",
|
||||
"matcher.add(\"GPE\", [nlp(\"Nashville\")])",
|
||||
"matches = matcher(doc)",
|
||||
"",
|
||||
"for match_id, start, end, ratio in matches:",
|
||||
" print(match_id, doc[start:end], ratio)"
|
||||
],
|
||||
"code_language": "python",
|
||||
"url": "https://spaczz.readthedocs.io/en/latest/",
|
||||
|
@ -442,6 +511,84 @@
|
|||
"website": "https://koaning.io"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "Klayers",
|
||||
"title": "Klayers",
|
||||
"category": ["pipeline"],
|
||||
"tags": ["AWS"],
|
||||
"slogan": "spaCy as a AWS Lambda Layer",
|
||||
"description": "A collection of Python Packages as AWS Lambda(λ) Layers",
|
||||
"github": "keithrozario/Klayers",
|
||||
"pip": "",
|
||||
"url": "https://github.com/keithrozario/Klayers",
|
||||
"code_language": "python",
|
||||
"author": "Keith Rozario",
|
||||
"author_links": {
|
||||
"twitter" : "https://twitter.com/keithrozario",
|
||||
"github": "https://github.com/keithrozario",
|
||||
"website": "https://www.keithrozario.com"
|
||||
},
|
||||
"code_example": [
|
||||
"# SAM Template",
|
||||
"MyLambdaFunction:",
|
||||
" Type: AWS::Serverless::Function",
|
||||
" Handler: 02_pipeline/spaCy.main",
|
||||
" Description: Name Entity Extraction",
|
||||
" Runtime: python3.8",
|
||||
" Layers:",
|
||||
" - arn:aws:lambda:${self:provider.region}:113088814899:layer:Klayers-python37-spacy:18"
|
||||
]
|
||||
},
|
||||
{
|
||||
"type": "education",
|
||||
"id": "video-spacys-ner-model-alt",
|
||||
"title": "Named Entity Recognition (NER) using spaCy",
|
||||
"slogan": "",
|
||||
"description": "In this video, I show you how to do named entity recognition using the spaCy library for Python.",
|
||||
"youtube": "Gn_PjruUtrc",
|
||||
"author": "Applied Language Technology",
|
||||
"author_links": {
|
||||
"twitter": "HelsinkiNLP",
|
||||
"github": "Applied-Language-Technology",
|
||||
"website": "https://applied-language-technology.mooc.fi/"
|
||||
},
|
||||
"category": ["videos"]
|
||||
},
|
||||
{
|
||||
"id": "HuSpaCy",
|
||||
"title": "HuSpaCy",
|
||||
"category": ["models"],
|
||||
"tags": ["Hungarian"],
|
||||
"slogan": "HuSpaCy: industrial-strength Hungarian natural language processing",
|
||||
"description": "HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing facilities.",
|
||||
"github": "huspacy/huspacy",
|
||||
"pip": "huspacy",
|
||||
"url": "https://github.com/huspacy/huspacy",
|
||||
"code_language": "python",
|
||||
"author": "SzegedAI",
|
||||
"author_links": {
|
||||
"github": "https://szegedai.github.io/",
|
||||
"website": "https://u-szeged.hu/english"
|
||||
},
|
||||
"code_example": [
|
||||
"# Load the model using huspacy",
|
||||
"import huspacy",
|
||||
"",
|
||||
"nlp = huspacy.load()",
|
||||
"",
|
||||
"# Load the mode using spacy.load()",
|
||||
"import spacy",
|
||||
"",
|
||||
"nlp = spacy.load(\"hu_core_news_lg\")",
|
||||
"",
|
||||
"# Load the model directly as a module",
|
||||
"import hu_core_news_lg",
|
||||
"",
|
||||
"nlp = hu_core_news_lg.load()\n",
|
||||
"# Either way you get the same model and can start processing texts.",
|
||||
"doc = nlp(\"Csiribiri csiribiri zabszalma - négy csillag közt alszom ma.\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": "spacy-stanza",
|
||||
"title": "spacy-stanza",
|
||||
|
@ -620,18 +767,17 @@
|
|||
"import spacy",
|
||||
"from spacymoji import Emoji",
|
||||
"",
|
||||
"nlp = spacy.load('en')",
|
||||
"emoji = Emoji(nlp)",
|
||||
"nlp.add_pipe(emoji, first=True)",
|
||||
"nlp = spacy.load(\"en_core_web_sm\")",
|
||||
"nlp.add_pipe(\"emoji\", first=True)",
|
||||
"doc = nlp(\"This is a test 😻 👍🏿\")",
|
||||
"",
|
||||
"doc = nlp('This is a test 😻 👍🏿')",
|
||||
"assert doc._.has_emoji == True",
|
||||
"assert doc[2:5]._.has_emoji == True",
|
||||
"assert doc[0]._.is_emoji == False",
|
||||
"assert doc[4]._.is_emoji == True",
|
||||
"assert doc[5]._.emoji_desc == 'thumbs up dark skin tone'",
|
||||
"assert doc._.has_emoji is True",
|
||||
"assert doc[2:5]._.has_emoji is True",
|
||||
"assert doc[0]._.is_emoji is False",
|
||||
"assert doc[4]._.is_emoji is True",
|
||||
"assert doc[5]._.emoji_desc == \"thumbs up dark skin tone\"",
|
||||
"assert len(doc._.emoji) == 2",
|
||||
"assert doc._.emoji[1] == ('👍🏿', 5, 'thumbs up dark skin tone')"
|
||||
"assert doc._.emoji[1] == (\"👍🏿\", 5, \"thumbs up dark skin tone\")"
|
||||
],
|
||||
"author": "Ines Montani",
|
||||
"author_links": {
|
||||
|
@ -868,9 +1014,8 @@
|
|||
"import spacy",
|
||||
"from spacy_sentiws import spaCySentiWS",
|
||||
"",
|
||||
"nlp = spacy.load('de')",
|
||||
"sentiws = spaCySentiWS(sentiws_path='data/sentiws/')",
|
||||
"nlp.add_pipe(sentiws)",
|
||||
"nlp = spacy.load('de_core_news_sm')",
|
||||
"nlp.add_pipe('sentiws', config={'sentiws_path': 'data/sentiws'})",
|
||||
"doc = nlp('Die Dummheit der Unterwerfung blüht in hübschen Farben.')",
|
||||
"",
|
||||
"for token in doc:",
|
||||
|
@ -3018,18 +3163,25 @@
|
|||
"import spacy",
|
||||
"import pytextrank",
|
||||
"",
|
||||
"nlp = spacy.load('en_core_web_sm')",
|
||||
"# example text",
|
||||
"text = \"\"\"Compatibility of systems of linear constraints over the set of natural numbers.",
|
||||
"Criteria of compatibility of a system of linear Diophantine equations, strict inequations,",
|
||||
"and nonstrict inequations are considered. Upper bounds for components of a minimal set of",
|
||||
"solutions and algorithms of construction of minimal generating sets of solutions for all types",
|
||||
"of systems are given. These criteria and the corresponding algorithms for constructing a minimal",
|
||||
"supporting set of solutions can be used in solving all the considered types systems and systems of mixed types.\"\"\"",
|
||||
"",
|
||||
"tr = pytextrank.TextRank()",
|
||||
"nlp.add_pipe(tr.PipelineComponent, name='textrank', last=True)",
|
||||
"# load a spaCy model, depending on language, scale, etc.",
|
||||
"nlp = spacy.load(\"en_core_web_sm\")",
|
||||
"# add PyTextRank to the spaCy pipeline",
|
||||
"nlp.add_pipe(\"textrank\")",
|
||||
"",
|
||||
"text = 'Compatibility of systems of linear constraints over the set of natural numbers. Criteria of compatibility of a system of linear Diophantine equations, strict inequations, and nonstrict inequations are considered.'",
|
||||
"doc = nlp(text)",
|
||||
"",
|
||||
"# examine the top-ranked phrases in the document",
|
||||
"for p in doc._.phrases:",
|
||||
" print('{:.4f} {:5d} {}'.format(p.rank, p.count, p.text))",
|
||||
" print(p.chunks)"
|
||||
"for phrase in doc._.phrases:",
|
||||
" print(phrase.text)",
|
||||
" print(phrase.rank, phrase.count)",
|
||||
" print(phrase.chunks)"
|
||||
],
|
||||
"code_language": "python",
|
||||
"url": "https://github.com/DerwenAI/pytextrank/wiki",
|
||||
|
@ -3055,21 +3207,13 @@
|
|||
"import spacy",
|
||||
"from spacy_syllables import SpacySyllables",
|
||||
"",
|
||||
"nlp = spacy.load('en_core_web_sm')",
|
||||
"syllables = SpacySyllables(nlp)",
|
||||
"nlp.add_pipe(syllables, after='tagger')",
|
||||
"nlp = spacy.load(\"en_core_web_sm\")",
|
||||
"nlp.add_pipe(\"syllables\", after=\"tagger\")",
|
||||
"",
|
||||
"doc = nlp('terribly long')",
|
||||
"",
|
||||
"data = [",
|
||||
" (token.text, token._.syllables, token._.syllables_count)",
|
||||
" for token in doc",
|
||||
"]",
|
||||
"",
|
||||
"assert data == [",
|
||||
" ('terribly', ['ter', 'ri', 'bly'], 3),",
|
||||
" ('long', ['long'], 1)",
|
||||
"]"
|
||||
"assert nlp.pipe_names == [\"tok2vec\", \"tagger\", \"syllables\", \"parser\", \"attribute_ruler\", \"lemmatizer\", \"ner\"]",
|
||||
"doc = nlp(\"terribly long\")",
|
||||
"data = [(token.text, token..syllables, token..syllables_count) for token in doc]",
|
||||
"assert data == [(\"terribly\", [\"ter\", \"ri\", \"bly\"], 3), (\"long\", [\"long\"], 1)]"
|
||||
],
|
||||
"thumb": "https://raw.githubusercontent.com/sloev/spacy-syllables/master/logo.png",
|
||||
"author": "Johannes Valbjørn",
|
||||
|
|
Loading…
Reference in New Issue