diff --git a/spacy/cli/init_pipeline.py b/spacy/cli/init_pipeline.py index 2dc7a741e..8ff47d4a8 100644 --- a/spacy/cli/init_pipeline.py +++ b/spacy/cli/init_pipeline.py @@ -4,16 +4,21 @@ from pathlib import Path from wasabi import msg import typer from thinc.api import Config, fix_random_seed, set_gpu_allocator +import srsly from .. import util -from ..util import registry, resolve_dot_names +from ..util import registry, resolve_dot_names, OOV_RANK from ..schemas import ConfigSchemaTraining, ConfigSchemaPretrain from ..language import Language +from ..lookups import Lookups from ..errors import Errors from ._util import init_cli, Arg, Opt, parse_config_overrides, show_validation_error from ._util import import_code, get_sourced_components, load_from_paths +DEFAULT_OOV_PROB = -20 + + @init_cli.command( "nlp", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}, ) @@ -68,7 +73,8 @@ def init_pipeline(config: Config, use_gpu: int = -1) -> Language: T = registry.resolve(config["training"], schema=ConfigSchemaTraining) dot_names = [T["train_corpus"], T["dev_corpus"], T["raw_text"]] train_corpus, dev_corpus, raw_text = resolve_dot_names(config, dot_names) - util.load_vocab_data_into_model(nlp, lookups=T["lookups"]) + # TODO: move lookups to [initialize], add vocab data + init_vocab(nlp, lookups=T["lookups"]) msg.good("Created vocabulary") if T["vectors"] is not None: add_vectors(nlp, T["vectors"]) @@ -98,6 +104,33 @@ def init_pipeline(config: Config, use_gpu: int = -1) -> Language: return nlp +def init_vocab( + nlp: Language, + *, + vocab_data: Optional[Path] = None, + lookups: Optional[Lookups] = None, +) -> Language: + if lookups: + nlp.vocab.lookups = lookups + msg.good(f"Added vocab lookups: {', '.join(lookups.tables)}") + data_path = util.ensure_path(vocab_data) + if data_path is not None: + lex_attrs = srsly.read_jsonl(data_path) + for lexeme in nlp.vocab: + lexeme.rank = OOV_RANK + for attrs in lex_attrs: + if "settings" in attrs: + continue + lexeme = nlp.vocab[attrs["orth"]] + lexeme.set_attrs(**attrs) + if len(nlp.vocab): + oov_prob = min(lex.prob for lex in nlp.vocab) - 1 + else: + oov_prob = DEFAULT_OOV_PROB + nlp.vocab.cfg.update({"oov_prob": oov_prob}) + msg.good(f"Added {len(nlp.vocab)} lexical entries to the vocab") + + def add_tok2vec_weights(config: Config, nlp: Language) -> None: # Load pretrained tok2vec weights - cf. CLI command 'pretrain' weights_data = load_from_paths(config) @@ -128,6 +161,7 @@ def add_vectors(nlp: Language, vectors: str) -> None: title=title, desc=desc, hint_fill=False, show_config=False ): util.load_vectors_into_model(nlp, vectors) + msg(f"Added {len(nlp.vocab.vectors)} vectors from {vectors}") def verify_config(nlp: Language) -> None: diff --git a/spacy/training/initialize.py b/spacy/training/initialize.py index 07bbced8d..e69de29bb 100644 --- a/spacy/training/initialize.py +++ b/spacy/training/initialize.py @@ -1,378 +0,0 @@ -from pathlib import Path -from typing import Dict -from ._util import app, init_cli, Arg, Opt -from ..vectors import Vectors -from ..errors import Errors, Warnings -from ..language import Language -from ..util import ensure_path, get_lang_class, load_model, OOV_RANK - -try: - import ftfy -except ImportError: - ftfy = None - - -def must_initialize(init_path: Path, config_path: Path, overrides: Dict) -> bool: - config = util.load_config(config_path, overrides=overrides) - if not init_path.exists(): - return True - elif not (init_path / "config.cfg").exists(): - return True - else: - init_cfg = util.load_config(init_path / "config.cfg", interpolate=True) - if config.to_str() != init_cfg.to_str(): - return True - else: - return False - - -def init_pipeline(config: Config, use_gpu: int=-1): - raw_config = config - config = raw_config.interpolate() - if config["training"]["seed"] is not None: - fix_random_seed(config["training"]["seed"]) - allocator = config["training"]["gpu_allocator"] - if use_gpu >= 0 and allocator: - set_gpu_allocator(allocator) - # Use original config here before it's resolved to functions - sourced_components = get_sourced_components(config) - with show_validation_error(config_path): - nlp = util.load_model_from_config(raw_config) - # Resolve all training-relevant sections using the filled nlp config - T = registry.resolve( - config["training"], - schema=TrainingSchema, - validate=validate, - ) - # TODO: It might not be 'corpora' - corpora = registry.resolve(config["corpora"], validate=True) - raw_text, tag_map, morph_rules, weights_data = load_from_paths(config) - util.load_vocab_data_into_model(nlp, lookups=T["lookups"]) - if T["vectors"] is not None: - add_vectors(nlp, T["vectors"]) - score_weights = T["score_weights"] - optimizer = T["optimizer"] - train_corpus = dot_to_object({"corpora": corpora}, T["train_corpus"]) - dev_corpus = dot_to_object({"corpora": corpora}, T["dev_corpus"]) - batcher = T["batcher"] - train_logger = T["logger"] - before_to_disk = create_before_to_disk_callback(T["before_to_disk"]) - # Components that shouldn't be updated during training - frozen_components = T["frozen_components"] - # Sourced components that require resume_training - resume_components = [p for p in sourced_components if p not in frozen_components] - msg.info(f"Pipeline: {nlp.pipe_names}") - if resume_components: - with nlp.select_pipes(enable=resume_components): - msg.info(f"Resuming training for: {resume_components}") - nlp.resume_training(sgd=optimizer) - with nlp.select_pipes(disable=[*frozen_components, *resume_components]): - nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer) - # Verify the config after calling 'begin_training' to ensure labels - # are properly initialized - verify_config(nlp) - - if tag_map: - # Replace tag map with provided mapping - nlp.vocab.morphology.load_tag_map(tag_map) - if morph_rules: - # Load morph rules - nlp.vocab.morphology.load_morph_exceptions(morph_rules) - - # Load pretrained tok2vec weights - cf. CLI command 'pretrain' - if weights_data is not None: - tok2vec_component = C["pretraining"]["component"] - if tok2vec_component is None: - msg.fail( - f"To use pretrained tok2vec weights, [pretraining.component] " - f"needs to specify the component that should load them.", - exits=1, - ) - layer = nlp.get_pipe(tok2vec_component).model - tok2vec_layer = C["pretraining"]["layer"] - if tok2vec_layer: - layer = layer.get_ref(tok2vec_layer) - layer.from_bytes(weights_data) - msg.info(f"Loaded pretrained weights into component '{tok2vec_component}'") - return nlp - - -def init_vocab( - lang: str, - output_dir: Path, - freqs_loc: Optional[Path] = None, - clusters_loc: Optional[Path] = None, - jsonl_loc: Optional[Path] = None, - vectors_loc: Optional[Path] = None, - prune_vectors: int = -1, - truncate_vectors: int = 0, - vectors_name: Optional[str] = None, - model_name: Optional[str] = None, - base_model: Optional[str] = None, - silent: bool = True, -) -> Language: - msg = Printer(no_print=silent, pretty=not silent) - if jsonl_loc is not None: - if freqs_loc is not None or clusters_loc is not None: - settings = ["-j"] - if freqs_loc: - settings.append("-f") - if clusters_loc: - settings.append("-c") - msg.warn( - "Incompatible arguments", - "The -f and -c arguments are deprecated, and not compatible " - "with the -j argument, which should specify the same " - "information. Either merge the frequencies and clusters data " - "into the JSONL-formatted file (recommended), or use only the " - "-f and -c files, without the other lexical attributes.", - ) - jsonl_loc = ensure_path(jsonl_loc) - lex_attrs = srsly.read_jsonl(jsonl_loc) - else: - clusters_loc = ensure_path(clusters_loc) - freqs_loc = ensure_path(freqs_loc) - if freqs_loc is not None and not freqs_loc.exists(): - msg.fail("Can't find words frequencies file", freqs_loc, exits=1) - lex_attrs = read_attrs_from_deprecated(msg, freqs_loc, clusters_loc) - - with msg.loading("Creating blank pipeline..."): - nlp = create_model(lang, lex_attrs, name=model_name, base_model=base_model) - - msg.good("Successfully created blank pipeline") - if vectors_loc is not None: - add_vectors( - msg, nlp, vectors_loc, truncate_vectors, prune_vectors, vectors_name - ) - vec_added = len(nlp.vocab.vectors) - lex_added = len(nlp.vocab) - msg.good( - "Sucessfully compiled vocab", f"{lex_added} entries, {vec_added} vectors", - ) - if not output_dir.exists(): - output_dir.mkdir() - nlp.to_disk(output_dir) - return nlp - - -def open_file(loc: Union[str, Path]) -> IO: - """Handle .gz, .tar.gz or unzipped files""" - loc = ensure_path(loc) - if tarfile.is_tarfile(str(loc)): - return tarfile.open(str(loc), "r:gz") - elif loc.parts[-1].endswith("gz"): - return (line.decode("utf8") for line in gzip.open(str(loc), "r")) - elif loc.parts[-1].endswith("zip"): - zip_file = zipfile.ZipFile(str(loc)) - names = zip_file.namelist() - file_ = zip_file.open(names[0]) - return (line.decode("utf8") for line in file_) - else: - return loc.open("r", encoding="utf8") - - -def read_attrs_from_deprecated( - msg: Printer, freqs_loc: Optional[Path], clusters_loc: Optional[Path] -) -> List[Dict[str, Any]]: - if freqs_loc is not None: - with msg.loading("Counting frequencies..."): - probs, _ = read_freqs(freqs_loc) - msg.good("Counted frequencies") - else: - probs, _ = ({}, DEFAULT_OOV_PROB) # noqa: F841 - if clusters_loc: - with msg.loading("Reading clusters..."): - clusters = read_clusters(clusters_loc) - msg.good("Read clusters") - else: - clusters = {} - lex_attrs = [] - sorted_probs = sorted(probs.items(), key=lambda item: item[1], reverse=True) - if len(sorted_probs): - for i, (word, prob) in tqdm(enumerate(sorted_probs)): - attrs = {"orth": word, "id": i, "prob": prob} - # Decode as a little-endian string, so that we can do & 15 to get - # the first 4 bits. See _parse_features.pyx - if word in clusters: - attrs["cluster"] = int(clusters[word][::-1], 2) - else: - attrs["cluster"] = 0 - lex_attrs.append(attrs) - return lex_attrs - - -def create_model( - lang: str, - lex_attrs: List[Dict[str, Any]], - name: Optional[str] = None, - base_model: Optional[Union[str, Path]] = None, -) -> Language: - if base_model: - nlp = load_model(base_model) - # keep the tokenizer but remove any existing pipeline components due to - # potentially conflicting vectors - for pipe in nlp.pipe_names: - nlp.remove_pipe(pipe) - else: - lang_class = get_lang_class(lang) - nlp = lang_class() - for lexeme in nlp.vocab: - lexeme.rank = OOV_RANK - for attrs in lex_attrs: - if "settings" in attrs: - continue - lexeme = nlp.vocab[attrs["orth"]] - lexeme.set_attrs(**attrs) - if len(nlp.vocab): - oov_prob = min(lex.prob for lex in nlp.vocab) - 1 - else: - oov_prob = DEFAULT_OOV_PROB - nlp.vocab.cfg.update({"oov_prob": oov_prob}) - if name: - nlp.meta["name"] = name - return nlp - - -def add_vectors( - msg: Printer, - nlp: Language, - vectors_loc: Optional[Path], - truncate_vectors: int, - prune_vectors: int, - name: Optional[str] = None, -) -> None: - vectors_loc = ensure_path(vectors_loc) - if vectors_loc and vectors_loc.parts[-1].endswith(".npz"): - nlp.vocab.vectors = Vectors(data=numpy.load(vectors_loc.open("rb"))) - for lex in nlp.vocab: - if lex.rank and lex.rank != OOV_RANK: - nlp.vocab.vectors.add(lex.orth, row=lex.rank) - else: - if vectors_loc: - with msg.loading(f"Reading vectors from {vectors_loc}"): - vectors_data, vector_keys = read_vectors( - msg, vectors_loc, truncate_vectors - ) - msg.good(f"Loaded vectors from {vectors_loc}") - else: - vectors_data, vector_keys = (None, None) - if vector_keys is not None: - for word in vector_keys: - if word not in nlp.vocab: - nlp.vocab[word] - if vectors_data is not None: - nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys) - if name is None: - # TODO: Is this correct? Does this matter? - nlp.vocab.vectors.name = f"{nlp.meta['lang']}_{nlp.meta['name']}.vectors" - else: - nlp.vocab.vectors.name = name - nlp.meta["vectors"]["name"] = nlp.vocab.vectors.name - if prune_vectors >= 1: - nlp.vocab.prune_vectors(prune_vectors) - - -def read_vectors(msg: Printer, vectors_loc: Path, truncate_vectors: int): - f = open_file(vectors_loc) - f = ensure_shape(f) - shape = tuple(int(size) for size in next(f).split()) - if truncate_vectors >= 1: - shape = (truncate_vectors, shape[1]) - vectors_data = numpy.zeros(shape=shape, dtype="f") - vectors_keys = [] - for i, line in enumerate(tqdm(f)): - line = line.rstrip() - pieces = line.rsplit(" ", vectors_data.shape[1]) - word = pieces.pop(0) - if len(pieces) != vectors_data.shape[1]: - msg.fail(Errors.E094.format(line_num=i, loc=vectors_loc), exits=1) - vectors_data[i] = numpy.asarray(pieces, dtype="f") - vectors_keys.append(word) - if i == truncate_vectors - 1: - break - return vectors_data, vectors_keys - - -def ensure_shape(lines): - """Ensure that the first line of the data is the vectors shape. - - If it's not, we read in the data and output the shape as the first result, - so that the reader doesn't have to deal with the problem. - """ - first_line = next(lines) - try: - shape = tuple(int(size) for size in first_line.split()) - except ValueError: - shape = None - if shape is not None: - # All good, give the data - yield first_line - yield from lines - else: - # Figure out the shape, make it the first value, and then give the - # rest of the data. - width = len(first_line.split()) - 1 - captured = [first_line] + list(lines) - length = len(captured) - yield f"{length} {width}" - yield from captured - - -def read_freqs( - freqs_loc: Path, max_length: int = 100, min_doc_freq: int = 5, min_freq: int = 50 -): - counts = PreshCounter() - total = 0 - with freqs_loc.open() as f: - for i, line in enumerate(f): - freq, doc_freq, key = line.rstrip().split("\t", 2) - freq = int(freq) - counts.inc(i + 1, freq) - total += freq - counts.smooth() - log_total = math.log(total) - probs = {} - with freqs_loc.open() as f: - for line in tqdm(f): - freq, doc_freq, key = line.rstrip().split("\t", 2) - doc_freq = int(doc_freq) - freq = int(freq) - if doc_freq >= min_doc_freq and freq >= min_freq and len(key) < max_length: - try: - word = literal_eval(key) - except SyntaxError: - # Take odd strings literally. - word = literal_eval(f"'{key}'") - smooth_count = counts.smoother(int(freq)) - probs[word] = math.log(smooth_count) - log_total - oov_prob = math.log(counts.smoother(0)) - log_total - return probs, oov_prob - - -def read_clusters(clusters_loc: Path) -> dict: - clusters = {} - if ftfy is None: - warnings.warn(Warnings.W004) - with clusters_loc.open() as f: - for line in tqdm(f): - try: - cluster, word, freq = line.split() - if ftfy is not None: - word = ftfy.fix_text(word) - except ValueError: - continue - # If the clusterer has only seen the word a few times, its - # cluster is unreliable. - if int(freq) >= 3: - clusters[word] = cluster - else: - clusters[word] = "0" - # Expand clusters with re-casing - for word, cluster in list(clusters.items()): - if word.lower() not in clusters: - clusters[word.lower()] = cluster - if word.title() not in clusters: - clusters[word.title()] = cluster - if word.upper() not in clusters: - clusters[word.upper()] = cluster - return clusters diff --git a/spacy/util.py b/spacy/util.py index 90ae9cf20..de1fd7f81 100644 --- a/spacy/util.py +++ b/spacy/util.py @@ -253,14 +253,6 @@ def load_vectors_into_model( nlp.vocab.strings.add(vectors_nlp.vocab.strings[key]) -def load_vocab_data_into_model( - nlp: "Language", *, lookups: Optional["Lookups"] = None -) -> None: - """Load vocab data.""" - if lookups: - nlp.vocab.lookups = lookups - - def load_model( name: Union[str, Path], *, @@ -422,11 +414,13 @@ def resolve_training_config( return registry.resolve(config, validate=validate) -def resolve_dot_names(config: Config, dot_names: List[Optional[str]]) -> List[Optional[Callable]]: - """Resolve one or more "dot notation" names, e.g. corpora.train. +def resolve_dot_names( + config: Config, dot_names: List[Optional[str]] +) -> List[Optional[Callable]]: + """Resolve one or more "dot notation" names, e.g. corpora.train. The paths could point anywhere into the config, so we don't know which top-level section we'll be looking within. - + We resolve the whole top-level section, although we could resolve less -- we could find the lowest part of the tree. """