mirror of https://github.com/explosion/spaCy.git
* Add a simple example POS tagger script
This commit is contained in:
parent
f5c256745b
commit
d4a013ccab
|
@ -0,0 +1,70 @@
|
|||
"""A quick example for training a part-of-speech tagger, without worrying
|
||||
about the tokenization, or other language-specific customizations."""
|
||||
|
||||
from __future__ import unicode_literals
|
||||
from __future__ import print_function
|
||||
|
||||
import plac
|
||||
from os import path
|
||||
import os
|
||||
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.tokenizer import Tokenizer
|
||||
from spacy.tagger import Tagger
|
||||
import random
|
||||
|
||||
|
||||
# You need to define a mapping from your data's part-of-speech tag names to the
|
||||
# Universal Part-of-Speech tag set, as spaCy includes an enum of these tags.
|
||||
# See here for the Universal Tag Set:
|
||||
# http://universaldependencies.github.io/docs/u/pos/index.html
|
||||
# You may also specify morphological features for your tags, from the universal
|
||||
# scheme.
|
||||
TAG_MAP = {
|
||||
'N': {"pos": "NOUN"},
|
||||
'V': {"pos": "VERB"},
|
||||
'J': {"pos": "ADJ"}
|
||||
}
|
||||
|
||||
# Usually you'll read this in, of course. Data formats vary.
|
||||
# Ensure your strings are unicode.
|
||||
DATA = [
|
||||
(
|
||||
["I", "like", "green", "eggs"],
|
||||
["N", "V", "J", "N"]
|
||||
),
|
||||
(
|
||||
["Eat", "blue", "ham"],
|
||||
["V", "J", "N"]
|
||||
)
|
||||
]
|
||||
|
||||
def ensure_dir(*parts):
|
||||
path_ = path.join(*parts)
|
||||
if not path.exists(path_):
|
||||
os.mkdir(path_)
|
||||
return path_
|
||||
|
||||
|
||||
def main(output_dir):
|
||||
ensure_dir(output_dir)
|
||||
ensure_dir(output_dir, "pos")
|
||||
ensure_dir(output_dir, "vocab")
|
||||
|
||||
vocab = Vocab(tag_map=TAG_MAP)
|
||||
tokenizer = Tokenizer(vocab, {}, None, None, None)
|
||||
# The default_templates argument is where features are specified. See
|
||||
# spacy/tagger.pyx for the defaults.
|
||||
tagger = Tagger.blank(vocab, Tagger.default_templates())
|
||||
|
||||
for i in range(5):
|
||||
for words, tags in DATA:
|
||||
tokens = tokenizer.tokens_from_list(words)
|
||||
tagger.train(tokens, tags)
|
||||
random.shuffle(DATA)
|
||||
tagger.model.end_training(path.join(output_dir, 'pos', 'model'))
|
||||
vocab.strings.dump(path.join(output_dir, 'vocab', 'strings.txt'))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
plac.call(main)
|
Loading…
Reference in New Issue