mirror of https://github.com/explosion/spaCy.git
Add docs for Vectors.most_similar [ci skip]
This commit is contained in:
parent
1db79a33cb
commit
ce1d441de5
|
@ -303,6 +303,29 @@ vectors, they will be counted individually.
|
||||||
| ----------- | ---- | ------------------------------------ |
|
| ----------- | ---- | ------------------------------------ |
|
||||||
| **RETURNS** | int | The number of all keys in the table. |
|
| **RETURNS** | int | The number of all keys in the table. |
|
||||||
|
|
||||||
|
## Vectors.most_similar {#most_similar tag="method"}
|
||||||
|
|
||||||
|
For each of the given vectors, find the `n` most similar entries to it, by
|
||||||
|
cosine. Queries are by vector. Results are returned as a
|
||||||
|
`(keys, best_rows, scores)` tuple. If `queries` is large, the calculations are
|
||||||
|
performed in chunks, to avoid consuming too much memory. You can set the
|
||||||
|
`batch_size` to control the size/space trade-off during the calculations.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> queries = numpy.asarray([numpy.random.uniform(-1, 1, (300,))])
|
||||||
|
> most_similar = nlp.vectors.most_similar(queries, n=10)
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| ------------ | --------- | ------------------------------------------------------------------ |
|
||||||
|
| `queries` | `ndarray` | An array with one or more vectors. |
|
||||||
|
| `batch_size` | int | The batch size to use. Default to `1024`. |
|
||||||
|
| `n` | int | The number of entries to return for each query. Defaults to `1`. |
|
||||||
|
| `sort` | bool | Whether to sort the entries returned by score. Defaults to `True`. |
|
||||||
|
| **RETURNS** | tuple | The most similar entries as a `(keys, best_rows, scores)` tuple. |
|
||||||
|
|
||||||
## Vectors.from_glove {#from_glove tag="method"}
|
## Vectors.from_glove {#from_glove tag="method"}
|
||||||
|
|
||||||
Load [GloVe](https://nlp.stanford.edu/projects/glove/) vectors from a directory.
|
Load [GloVe](https://nlp.stanford.edu/projects/glove/) vectors from a directory.
|
||||||
|
|
Loading…
Reference in New Issue