From cd5f748e0982524167e55884a7b1677a63b5b308 Mon Sep 17 00:00:00 2001 From: Matthw Honnibal Date: Sat, 30 May 2020 20:27:47 +0200 Subject: [PATCH] Add onto-joint experiment file --- examples/experiments/onto-joint/defaults.cfg | 115 +++++++++++++++++++ 1 file changed, 115 insertions(+) create mode 100644 examples/experiments/onto-joint/defaults.cfg diff --git a/examples/experiments/onto-joint/defaults.cfg b/examples/experiments/onto-joint/defaults.cfg new file mode 100644 index 000000000..fbac4ea7d --- /dev/null +++ b/examples/experiments/onto-joint/defaults.cfg @@ -0,0 +1,115 @@ +# Training hyper-parameters and additional features. +[training] +# Whether to train on sequences with 'gold standard' sentence boundaries +# and tokens. If you set this to true, take care to ensure your run-time +# data is passed in sentence-by-sentence via some prior preprocessing. +gold_preproc = false +# Limitations on training document length or number of examples. +max_length = 0 +limit = 0 +# Data augmentation +orth_variant_level = 0.0 +dropout = 0.1 +# Controls early-stopping. 0 or -1 mean unlimited. +patience = 1600 +max_epochs = 0 +max_steps = 20000 +eval_frequency = 400 +# Other settings +seed = 0 +accumulate_gradient = 1 +use_pytorch_for_gpu_memory = false +# Control how scores are printed and checkpoints are evaluated. +scores = ["speed", "tags_acc", "uas", "las", "ents_f"] +score_weights = {"las": 0.4, "ents_f": 0.4, "tags_acc": 0.2} +# These settings are invalid for the transformer models. +init_tok2vec = null +vectors = null + +[training.batch_size] +@schedules = "compounding.v1" +start = 1000 +stop = 1000 +compound = 1.001 + +[optimizer] +@optimizers = "Adam.v1" +beta1 = 0.9 +beta2 = 0.999 +L2_is_weight_decay = true +L2 = 0.01 +grad_clip = 1.0 +use_averages = true +eps = 1e-8 +learn_rate = 0.001 + +#[optimizer.learn_rate] +#@schedules = "warmup_linear.v1" +#warmup_steps = 250 +#total_steps = 20000 +#initial_rate = 0.001 + +[nlp] +lang = "en" +vectors = ${training:vectors} + +[nlp.pipeline.tok2vec] +factory = "tok2vec" + +[nlp.pipeline.senter] +factory = "senter" + +[nlp.pipeline.ner] +factory = "ner" + +[nlp.pipeline.tagger] +factory = "tagger" + +[nlp.pipeline.parser] +factory = "parser" + +[nlp.pipeline.senter.model] +@architectures = "spacy.Tagger.v1" + +[nlp.pipeline.senter.model.tok2vec] +@architectures = "spacy.Tok2VecTensors.v1" +width = ${nlp.pipeline.tok2vec.model:width} + +[nlp.pipeline.tagger.model] +@architectures = "spacy.Tagger.v1" + +[nlp.pipeline.tagger.model.tok2vec] +@architectures = "spacy.Tok2VecTensors.v1" +width = ${nlp.pipeline.tok2vec.model:width} + +[nlp.pipeline.parser.model] +@architectures = "spacy.TransitionBasedParser.v1" +nr_feature_tokens = 8 +hidden_width = 128 +maxout_pieces = 3 +use_upper = false + +[nlp.pipeline.parser.model.tok2vec] +@architectures = "spacy.Tok2VecTensors.v1" +width = ${nlp.pipeline.tok2vec.model:width} + +[nlp.pipeline.ner.model] +@architectures = "spacy.TransitionBasedParser.v1" +nr_feature_tokens = 3 +hidden_width = 128 +maxout_pieces = 3 +use_upper = false + +[nlp.pipeline.ner.model.tok2vec] +@architectures = "spacy.Tok2VecTensors.v1" +width = ${nlp.pipeline.tok2vec.model:width} + +[nlp.pipeline.tok2vec.model] +@architectures = "spacy.HashEmbedCNN.v1" +pretrained_vectors = ${nlp:vectors} +width = 256 +depth = 6 +window_size = 1 +embed_size = 10000 +maxout_pieces = 3 +subword_features = true