mirror of https://github.com/explosion/spaCy.git
Update get_loss for senter and morphologizer (#5724)
* Update get_loss for senter Update `SentenceRecognizer.get_loss` to keep it similar to `Tagger`. * Update get_loss for morphologizer Update `Morphologizer.get_loss` to keep it similar to `Tagger`.
This commit is contained in:
parent
8cb7f9ccff
commit
c9f0f75778
|
@ -272,7 +272,7 @@ cdef class Morphology:
|
|||
|
||||
@staticmethod
|
||||
def feats_to_dict(feats):
|
||||
if not feats:
|
||||
if not feats or feats == Morphology.EMPTY_MORPH:
|
||||
return {}
|
||||
return {field: Morphology.VALUE_SEP.join(sorted(values.split(Morphology.VALUE_SEP))) for field, values in
|
||||
[feat.split(Morphology.FIELD_SEP) for feat in feats.split(Morphology.FEATURE_SEP)]}
|
||||
|
|
|
@ -3,7 +3,7 @@ cimport numpy as np
|
|||
|
||||
import numpy
|
||||
import srsly
|
||||
from thinc.api import to_categorical
|
||||
from thinc.api import SequenceCategoricalCrossentropy
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
from ..vocab cimport Vocab
|
||||
|
@ -85,13 +85,10 @@ class Morphologizer(Tagger):
|
|||
doc.is_morphed = True
|
||||
|
||||
def get_loss(self, examples, scores):
|
||||
scores = self.model.ops.flatten(scores)
|
||||
tag_index = {tag: i for i, tag in enumerate(self.labels)}
|
||||
cdef int idx = 0
|
||||
correct = numpy.zeros((scores.shape[0],), dtype="i")
|
||||
guesses = scores.argmax(axis=1)
|
||||
known_labels = numpy.ones((scores.shape[0], 1), dtype="f")
|
||||
loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False)
|
||||
truths = []
|
||||
for eg in examples:
|
||||
eg_truths = []
|
||||
pos_tags = eg.get_aligned("POS", as_string=True)
|
||||
morphs = eg.get_aligned("MORPH", as_string=True)
|
||||
for i in range(len(morphs)):
|
||||
|
@ -104,20 +101,11 @@ class Morphologizer(Tagger):
|
|||
morph = self.vocab.strings[self.vocab.morphology.add(feats)]
|
||||
if morph == "":
|
||||
morph = Morphology.EMPTY_MORPH
|
||||
if morph is None:
|
||||
correct[idx] = guesses[idx]
|
||||
elif morph in tag_index:
|
||||
correct[idx] = tag_index[morph]
|
||||
else:
|
||||
correct[idx] = 0
|
||||
known_labels[idx] = 0.
|
||||
idx += 1
|
||||
correct = self.model.ops.xp.array(correct, dtype="i")
|
||||
d_scores = scores - to_categorical(correct, n_classes=scores.shape[1])
|
||||
d_scores *= self.model.ops.asarray(known_labels)
|
||||
loss = (d_scores**2).sum()
|
||||
docs = [eg.predicted for eg in examples]
|
||||
d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs])
|
||||
eg_truths.append(morph)
|
||||
truths.append(eg_truths)
|
||||
d_scores, loss = loss_func(scores, truths)
|
||||
if self.model.ops.xp.isnan(loss):
|
||||
raise ValueError("nan value when computing loss")
|
||||
return float(loss), d_scores
|
||||
|
||||
def to_bytes(self, exclude=tuple()):
|
||||
|
|
|
@ -521,29 +521,12 @@ class SentenceRecognizer(Tagger):
|
|||
doc.c[j].sent_start = -1
|
||||
|
||||
def get_loss(self, examples, scores):
|
||||
scores = self.model.ops.flatten(scores)
|
||||
tag_index = range(len(self.labels))
|
||||
cdef int idx = 0
|
||||
correct = numpy.zeros((scores.shape[0],), dtype="i")
|
||||
guesses = scores.argmax(axis=1)
|
||||
known_labels = numpy.ones((scores.shape[0], 1), dtype="f")
|
||||
for eg in examples:
|
||||
sent_starts = eg.get_aligned("sent_start")
|
||||
for sent_start in sent_starts:
|
||||
if sent_start is None:
|
||||
correct[idx] = guesses[idx]
|
||||
elif sent_start in tag_index:
|
||||
correct[idx] = sent_start
|
||||
else:
|
||||
correct[idx] = 0
|
||||
known_labels[idx] = 0.
|
||||
idx += 1
|
||||
correct = self.model.ops.xp.array(correct, dtype="i")
|
||||
d_scores = scores - to_categorical(correct, n_classes=scores.shape[1])
|
||||
d_scores *= self.model.ops.asarray(known_labels)
|
||||
loss = (d_scores**2).sum()
|
||||
docs = [eg.predicted for eg in examples]
|
||||
d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs])
|
||||
labels = self.labels
|
||||
loss_func = SequenceCategoricalCrossentropy(names=labels, normalize=False)
|
||||
truths = [[labels[x] for x in eg.get_aligned("sent_start")] for eg in examples]
|
||||
d_scores, loss = loss_func(scores, truths)
|
||||
if self.model.ops.xp.isnan(loss):
|
||||
raise ValueError("nan value when computing loss")
|
||||
return float(loss), d_scores
|
||||
|
||||
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None,
|
||||
|
|
Loading…
Reference in New Issue