mirror of https://github.com/explosion/spaCy.git
* Update bin/parser/train for printing output.
This commit is contained in:
parent
3d9f41c2c9
commit
c503654ec1
|
@ -148,8 +148,9 @@ def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
|
||||||
nlp.end_training(model_dir)
|
nlp.end_training(model_dir)
|
||||||
print('done')
|
print('done')
|
||||||
|
|
||||||
|
|
||||||
def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=False,
|
def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=False,
|
||||||
beam_width=None):
|
beam_width=None, cand_preproc=None):
|
||||||
nlp = Language(data_dir=model_dir)
|
nlp = Language(data_dir=model_dir)
|
||||||
if beam_width is not None:
|
if beam_width is not None:
|
||||||
nlp.parser.cfg.beam_width = beam_width
|
nlp.parser.cfg.beam_width = beam_width
|
||||||
|
@ -166,16 +167,14 @@ def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=False
|
||||||
nlp.entity(tokens)
|
nlp.entity(tokens)
|
||||||
nlp.parser(tokens)
|
nlp.parser(tokens)
|
||||||
else:
|
else:
|
||||||
tokens = nlp(raw_text, merge_mwes=False)
|
tokens = nlp(raw_text)
|
||||||
gold = GoldParse(tokens, annot_tuples)
|
gold = GoldParse(tokens, annot_tuples)
|
||||||
scorer.score(tokens, gold, verbose=verbose)
|
scorer.score(tokens, gold, verbose=verbose)
|
||||||
return scorer
|
return scorer
|
||||||
|
|
||||||
|
|
||||||
def write_parses(Language, dev_loc, model_dir, out_loc, beam_width=None):
|
def write_parses(Language, dev_loc, model_dir, out_loc):
|
||||||
nlp = Language(data_dir=model_dir)
|
nlp = Language(data_dir=model_dir)
|
||||||
if beam_width is not None:
|
|
||||||
nlp.parser.cfg.beam_width = beam_width
|
|
||||||
gold_tuples = read_json_file(dev_loc)
|
gold_tuples = read_json_file(dev_loc)
|
||||||
scorer = Scorer()
|
scorer = Scorer()
|
||||||
out_file = codecs.open(out_loc, 'w', 'utf8')
|
out_file = codecs.open(out_loc, 'w', 'utf8')
|
||||||
|
@ -188,14 +187,16 @@ def write_parses(Language, dev_loc, model_dir, out_loc, beam_width=None):
|
||||||
nlp.entity(tokens)
|
nlp.entity(tokens)
|
||||||
nlp.parser(tokens)
|
nlp.parser(tokens)
|
||||||
else:
|
else:
|
||||||
tokens = nlp(raw_text, merge_mwes=False)
|
tokens = nlp(raw_text)
|
||||||
gold = GoldParse(tokens, annot_tuples)
|
#gold = GoldParse(tokens, annot_tuples)
|
||||||
scorer.score(tokens, gold, verbose=False)
|
#scorer.score(tokens, gold, verbose=False)
|
||||||
for t in tokens:
|
for sent in tokens.sents:
|
||||||
out_file.write(
|
for t in sent:
|
||||||
'%s\t%s\t%s\t%s\n' % (t.orth_, t.tag_, t.head.orth_, t.dep_)
|
if not t.is_space:
|
||||||
)
|
out_file.write(
|
||||||
return scorer
|
'%d\t%s\t%s\t%s\t%s\n' % (t.i, t.orth_, t.tag_, t.head.orth_, t.dep_)
|
||||||
|
)
|
||||||
|
out_file.write('\n')
|
||||||
|
|
||||||
|
|
||||||
@plac.annotations(
|
@plac.annotations(
|
||||||
|
@ -220,14 +221,15 @@ def main(train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbos
|
||||||
gold_preproc=gold_preproc, n_sents=n_sents,
|
gold_preproc=gold_preproc, n_sents=n_sents,
|
||||||
corruption_level=corruption_level, n_iter=n_iter,
|
corruption_level=corruption_level, n_iter=n_iter,
|
||||||
verbose=verbose)
|
verbose=verbose)
|
||||||
#if out_loc:
|
if out_loc:
|
||||||
# write_parses(English, dev_loc, model_dir, out_loc, beam_width=beam_width)
|
write_parses(English, dev_loc, model_dir, out_loc)
|
||||||
scorer = evaluate(English, list(read_json_file(dev_loc)),
|
scorer = evaluate(English, list(read_json_file(dev_loc)),
|
||||||
model_dir, gold_preproc=gold_preproc, verbose=verbose)
|
model_dir, gold_preproc=gold_preproc, verbose=verbose)
|
||||||
print('TOK', scorer.token_acc)
|
print('TOK', scorer.token_acc)
|
||||||
print('POS', scorer.tags_acc)
|
print('POS', scorer.tags_acc)
|
||||||
print('UAS', scorer.uas)
|
print('UAS', scorer.uas)
|
||||||
print('LAS', scorer.las)
|
print('LAS', scorer.las)
|
||||||
|
print('SBD', scorer.sbd_acc)
|
||||||
|
|
||||||
print('NER P', scorer.ents_p)
|
print('NER P', scorer.ents_p)
|
||||||
print('NER R', scorer.ents_r)
|
print('NER R', scorer.ents_r)
|
||||||
|
|
Loading…
Reference in New Issue