mirror of https://github.com/explosion/spaCy.git
Merge pull request #107 from henningpeters/master
doctests for website: 'home'-section
This commit is contained in:
commit
c3164f9cbe
|
@ -24,4 +24,4 @@ install:
|
|||
|
||||
# run tests
|
||||
script:
|
||||
- "py.test tests/ -x"
|
||||
- "py.test tests/ website/tests/ -x"
|
||||
|
|
|
@ -1,4 +1,8 @@
|
|||
all: site
|
||||
all: src/code site
|
||||
|
||||
src/code: tests/test_*.py
|
||||
mkdir -p src/code/
|
||||
./create_code_samples tests/ src/code/
|
||||
|
||||
site: site/index.html site/blog/ site/docs/ site/license/ site/blog/introducing-spacy/ site/blog/parsing-english-in-python/ site/blog/part-of-speech-POS-tagger-in-python/ site/tutorials/twitter-filter/ site/tutorials/syntax-search/ site/tutorials/mark-adverbs/ site/blog/writing-c-in-cython/ site/blog/how-spacy-works/
|
||||
|
||||
|
|
|
@ -0,0 +1,69 @@
|
|||
#!/usr/bin/env python
|
||||
import sys
|
||||
import re
|
||||
import os
|
||||
import ast
|
||||
|
||||
# cgi.escape is deprecated since py32
|
||||
try:
|
||||
from html import escape
|
||||
except ImportError:
|
||||
from cgi import escape
|
||||
|
||||
|
||||
src_dirname = sys.argv[1]
|
||||
dst_dirname = sys.argv[2]
|
||||
prefix = "test_"
|
||||
|
||||
|
||||
for filename in os.listdir(src_dirname):
|
||||
match = re.match(re.escape(prefix) + r"(.+)\.py", filename)
|
||||
if not match:
|
||||
continue
|
||||
|
||||
name = match.group(1)
|
||||
source = open(os.path.join(src_dirname, filename)).readlines()
|
||||
tree = ast.parse("".join(source))
|
||||
|
||||
for item in tree.body:
|
||||
if isinstance(item, ast.FunctionDef) and item.name.startswith(prefix):
|
||||
|
||||
# only ast.expr and ast.stmt have line numbers, see:
|
||||
# https://docs.python.org/2/library/ast.html#ast.AST.lineno
|
||||
line_numbers = []
|
||||
|
||||
def fill_line_numbers(node):
|
||||
for child in ast.iter_child_nodes(node):
|
||||
if ((isinstance(child, ast.expr) or
|
||||
isinstance(child, ast.stmt)) and
|
||||
child.lineno > item.lineno):
|
||||
|
||||
line_numbers.append(child.lineno)
|
||||
fill_line_numbers(child)
|
||||
|
||||
fill_line_numbers(item)
|
||||
body = source[min(line_numbers)-1:max(line_numbers)]
|
||||
|
||||
# make sure we are inside an indented function body
|
||||
assert all([re.match(r"\s", l[0]) for l in body])
|
||||
|
||||
offset = 0
|
||||
for line in body:
|
||||
match = re.search(r"[^\s]", line)
|
||||
if match:
|
||||
offset = match.start(0)
|
||||
break
|
||||
|
||||
# remove indentation
|
||||
assert offset > 0
|
||||
|
||||
for i in range(len(body)):
|
||||
body[i] = body[i][offset:] if len(body[i]) > offset else "\n"
|
||||
|
||||
# make sure empty lines contain a newline
|
||||
assert all([l[-1] == "\n" for l in body])
|
||||
|
||||
code_filename = "%s.%s" % (name, item.name[len(prefix):])
|
||||
|
||||
with open(os.path.join(dst_dirname, code_filename), "w") as f:
|
||||
f.write(escape("".join(body)))
|
|
@ -7,111 +7,39 @@ mixin example(name)
|
|||
|
||||
+example("Load resources and process text")
|
||||
pre.language-python: code
|
||||
| from __future__ import unicode_literals, print_function
|
||||
| from spacy.en import English
|
||||
| nlp = English()
|
||||
| doc = nlp('Hello, world. Here are two sentences.')
|
||||
include ../../code/home.load_resources_and_process_text
|
||||
|
||||
+example("Get tokens and sentences")
|
||||
pre.language-python: code
|
||||
| token = doc[0]
|
||||
| sentence = doc.sents.next()
|
||||
| assert token is sentence[0]
|
||||
| assert sentence.text == 'Hello, world.'
|
||||
include ../../code/home.get_tokens_and_sentences
|
||||
|
||||
+example("Use integer IDs for any string")
|
||||
pre.language-python: code
|
||||
| hello_id = nlp.vocab.strings['Hello']
|
||||
| hello_str = nlp.vocab.strings[hello_id]
|
||||
|
|
||||
| assert token.orth == hello_id == 469755
|
||||
| assert token.orth_ == hello_str == 'Hello'
|
||||
include ../../code/home.use_integer_ids_for_any_strings
|
||||
|
||||
+example("Get and set string views and flags")
|
||||
pre.language-python: code
|
||||
| assert token.shape_ == 'Xxxxx'
|
||||
| for lexeme in nlp.vocab:
|
||||
| if lexeme.is_alpha:
|
||||
| lexeme.shape_ = 'W'
|
||||
| elif lexeme.is_digit:
|
||||
| lexeme.shape_ = 'D'
|
||||
| elif lexeme.is_punct:
|
||||
| lexeme.shape_ = 'P'
|
||||
| else:
|
||||
| lexeme.shape_ = 'M'
|
||||
| assert token.shape_ == 'W'
|
||||
include ../../code/home.get_and_set_string_views_and_flags
|
||||
|
||||
+example("Export to numpy arrays")
|
||||
pre.language-python: code
|
||||
| from spacy.en.attrs import ORTH, LIKE_URL, IS_OOV
|
||||
|
|
||||
| attr_ids = [ORTH, LIKE_URL, IS_OOV]
|
||||
| doc_array = doc.to_array(attr_ids)
|
||||
| assert doc_array.shape == (len(doc), len(attr_ids))
|
||||
| assert doc[0].orth == doc_array[0, 0]
|
||||
| assert doc[1].orth == doc_array[1, 0]
|
||||
| assert doc[0].like_url == doc_array[0, 1]
|
||||
| assert list(doc_array[:, 1]) == [t.like_url for t in doc]
|
||||
include ../../code/home.export_to_numpy_arrays
|
||||
|
||||
+example("Word vectors")
|
||||
pre.language-python: code
|
||||
| doc = nlp("Apples and oranges are similar. Boots and hippos aren't.")
|
||||
|
|
||||
| apples = doc[0]
|
||||
| oranges = doc[1]
|
||||
| boots = doc[6]
|
||||
| hippos = doc[8]
|
||||
|
|
||||
| assert apples.similarity(oranges) > boots.similarity(hippos)
|
||||
include ../../code/home.word_vectors
|
||||
|
||||
+example("Part-of-speech tags")
|
||||
pre.language-python: code
|
||||
| from spacy.parts_of_speech import ADV
|
||||
|
|
||||
| def is_adverb(token):
|
||||
| return token.pos == spacy.parts_of_speech.ADV
|
||||
|
|
||||
| # These are data-specific, so no constants are provided. You have to look
|
||||
| # up the IDs from the StringStore.
|
||||
| NNS = nlp.vocab.strings['NNS']
|
||||
| NNPS = nlp.vocab.strings['NNPS']
|
||||
| def is_plural_noun(token):
|
||||
| return token.tag == NNS or token.tag == NNPS
|
||||
|
|
||||
| def print_coarse_pos(token):
|
||||
| print(token.pos_)
|
||||
|
|
||||
| def print_fine_pos(token):
|
||||
| print(token.tag_)
|
||||
include ../../code/home.part_of_speech_tags
|
||||
|
||||
+example("Syntactic dependencies")
|
||||
pre.language-python: code
|
||||
| def dependency_labels_to_root(token):
|
||||
| '''Walk up the syntactic tree, collecting the arc labels.'''
|
||||
| dep_labels = []
|
||||
| while token.head is not token:
|
||||
| dep_labels.append(token.dep)
|
||||
| token = token.head
|
||||
| return dep_labels
|
||||
include ../../code/home.syntactic_dependencies
|
||||
|
||||
+example("Named entities")
|
||||
pre.language-python: code
|
||||
| def iter_products(docs):
|
||||
| for doc in docs:
|
||||
| for ent in doc.ents:
|
||||
| if ent.label_ == 'PRODUCT':
|
||||
| yield ent
|
||||
|
|
||||
| def word_is_in_entity(word):
|
||||
| return word.ent_type != 0
|
||||
|
|
||||
| def count_parent_verb_by_person(docs):
|
||||
| counts = defaultdict(defaultdict(int))
|
||||
| for doc in docs:
|
||||
| for ent in doc.ents:
|
||||
| if ent.label_ == 'PERSON' and ent.root.head.pos == VERB:
|
||||
| counts[ent.orth_][ent.root.head.lemma_] += 1
|
||||
| return counts
|
||||
include ../../code/home.named_entities
|
||||
|
||||
//+example("Define custom NER rules")
|
||||
// pre.language-python: code
|
||||
|
@ -120,40 +48,11 @@ mixin example(name)
|
|||
|
||||
+example("Calculate inline mark-up on original string")
|
||||
pre.language-python: code
|
||||
| def put_spans_around_tokens(doc, get_classes):
|
||||
| '''Given some function to compute class names, put each token in a
|
||||
| span element, with the appropriate classes computed.
|
||||
|
|
||||
| All whitespace is preserved, outside of the spans. (Yes, I know HTML
|
||||
| won't display it. But the point is no information is lost, so you can
|
||||
| calculate what you need, e.g. <br /> tags, <p> tags, etc.)
|
||||
| '''
|
||||
| output = []
|
||||
| template = '<span classes="{classes}">{word}</span>{space}'
|
||||
| for token in doc:
|
||||
| if token.is_space:
|
||||
| output.append(token.orth_)
|
||||
| else:
|
||||
| output.append(
|
||||
| template.format(
|
||||
| classes=' '.join(get_classes(token)),
|
||||
| word=token.orth_,
|
||||
| space=token.whitespace_))
|
||||
| string = ''.join(output)
|
||||
| string = string.replace('\n', '<br />')
|
||||
| string = string.replace('\t', ' ')
|
||||
| return string
|
||||
|
||||
include ../../code/home.calculate_inline_mark_up_on_original_string
|
||||
|
||||
+example("Efficient binary serialization")
|
||||
pre.language-python: code
|
||||
| byte_string = doc.as_bytes()
|
||||
| open('/tmp/moby_dick.bin', 'wb').write(byte_string)
|
||||
|
|
||||
| nlp = spacy.en.English()
|
||||
| for byte_string in Doc.read(open('/tmp/moby_dick.bin', 'rb')):
|
||||
| doc = Doc(nlp.vocab)
|
||||
| doc.from_bytes(byte_string)
|
||||
include ../../code/home.efficient_binary_serialization
|
||||
|
||||
+example("Full documentation")
|
||||
ul
|
||||
|
|
|
@ -0,0 +1,161 @@
|
|||
from __future__ import unicode_literals
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def nlp():
|
||||
from spacy.en import English
|
||||
return English()
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def doc(nlp):
|
||||
return nlp('Hello, world. Here are two sentences.')
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def token(doc):
|
||||
return doc[0]
|
||||
|
||||
|
||||
def test_load_resources_and_process_text():
|
||||
from spacy.en import English
|
||||
nlp = English()
|
||||
doc = nlp('Hello, world. Here are two sentences.')
|
||||
|
||||
|
||||
def test_get_tokens_and_sentences(doc):
|
||||
token = doc[0]
|
||||
sentence = doc.sents.next()
|
||||
assert token is sentence[0]
|
||||
assert sentence.text == 'Hello, world.'
|
||||
|
||||
|
||||
def test_use_integer_ids_for_any_strings(nlp, token):
|
||||
hello_id = nlp.vocab.strings['Hello']
|
||||
hello_str = nlp.vocab.strings[hello_id]
|
||||
|
||||
assert token.orth == hello_id == 469755
|
||||
assert token.orth_ == hello_str == 'Hello'
|
||||
|
||||
|
||||
def test_get_and_set_string_views_and_flags(nlp, token):
|
||||
assert token.shape_ == 'Xxxxx'
|
||||
for lexeme in nlp.vocab:
|
||||
if lexeme.is_alpha:
|
||||
lexeme.shape_ = 'W'
|
||||
elif lexeme.is_digit:
|
||||
lexeme.shape_ = 'D'
|
||||
elif lexeme.is_punct:
|
||||
lexeme.shape_ = 'P'
|
||||
else:
|
||||
lexeme.shape_ = 'M'
|
||||
assert token.shape_ == 'W'
|
||||
|
||||
|
||||
def test_export_to_numpy_arrays(nlp, doc):
|
||||
from spacy.en.attrs import ORTH, LIKE_URL, IS_OOV
|
||||
|
||||
attr_ids = [ORTH, LIKE_URL, IS_OOV]
|
||||
doc_array = doc.to_array(attr_ids)
|
||||
assert doc_array.shape == (len(doc), len(attr_ids))
|
||||
assert doc[0].orth == doc_array[0, 0]
|
||||
assert doc[1].orth == doc_array[1, 0]
|
||||
assert doc[0].like_url == doc_array[0, 1]
|
||||
assert list(doc_array[:, 1]) == [t.like_url for t in doc]
|
||||
|
||||
|
||||
def test_word_vectors(nlp):
|
||||
doc = nlp("Apples and oranges are similar. Boots and hippos aren't.")
|
||||
|
||||
apples = doc[0]
|
||||
oranges = doc[1]
|
||||
boots = doc[6]
|
||||
hippos = doc[8]
|
||||
|
||||
assert apples.similarity(oranges) > boots.similarity(hippos)
|
||||
|
||||
|
||||
def test_part_of_speech_tags(nlp):
|
||||
from spacy.parts_of_speech import ADV
|
||||
|
||||
def is_adverb(token):
|
||||
return token.pos == spacy.parts_of_speech.ADV
|
||||
|
||||
# These are data-specific, so no constants are provided. You have to look
|
||||
# up the IDs from the StringStore.
|
||||
NNS = nlp.vocab.strings['NNS']
|
||||
NNPS = nlp.vocab.strings['NNPS']
|
||||
def is_plural_noun(token):
|
||||
return token.tag == NNS or token.tag == NNPS
|
||||
|
||||
def print_coarse_pos(token):
|
||||
print(token.pos_)
|
||||
|
||||
def print_fine_pos(token):
|
||||
print(token.tag_)
|
||||
|
||||
|
||||
def test_syntactic_dependencies():
|
||||
def dependency_labels_to_root(token):
|
||||
'''Walk up the syntactic tree, collecting the arc labels.'''
|
||||
dep_labels = []
|
||||
while token.head is not token:
|
||||
dep_labels.append(token.dep)
|
||||
token = token.head
|
||||
return dep_labels
|
||||
|
||||
|
||||
def test_named_entities():
|
||||
def iter_products(docs):
|
||||
for doc in docs:
|
||||
for ent in doc.ents:
|
||||
if ent.label_ == 'PRODUCT':
|
||||
yield ent
|
||||
|
||||
def word_is_in_entity(word):
|
||||
return word.ent_type != 0
|
||||
|
||||
def count_parent_verb_by_person(docs):
|
||||
counts = defaultdict(defaultdict(int))
|
||||
for doc in docs:
|
||||
for ent in doc.ents:
|
||||
if ent.label_ == 'PERSON' and ent.root.head.pos == VERB:
|
||||
counts[ent.orth_][ent.root.head.lemma_] += 1
|
||||
return counts
|
||||
|
||||
|
||||
def test_calculate_inline_mark_up_on_original_string():
|
||||
def put_spans_around_tokens(doc, get_classes):
|
||||
'''Given some function to compute class names, put each token in a
|
||||
span element, with the appropriate classes computed.
|
||||
|
||||
All whitespace is preserved, outside of the spans. (Yes, I know HTML
|
||||
won't display it. But the point is no information is lost, so you can
|
||||
calculate what you need, e.g. <br /> tags, <p> tags, etc.)
|
||||
'''
|
||||
output = []
|
||||
template = '<span classes="{classes}">{word}</span>{space}'
|
||||
for token in doc:
|
||||
if token.is_space:
|
||||
output.append(token.orth_)
|
||||
else:
|
||||
output.append(
|
||||
template.format(
|
||||
classes=' '.join(get_classes(token)),
|
||||
word=token.orth_,
|
||||
space=token.whitespace_))
|
||||
string = ''.join(output)
|
||||
string = string.replace('\n', '')
|
||||
string = string.replace('\t', ' ')
|
||||
return string
|
||||
|
||||
|
||||
def test_efficient_binary_serialization(doc):
|
||||
byte_string = doc.as_bytes()
|
||||
open('/tmp/moby_dick.bin', 'wb').write(byte_string)
|
||||
|
||||
nlp = spacy.en.English()
|
||||
for byte_string in Doc.read(open('/tmp/moby_dick.bin', 'rb')):
|
||||
doc = Doc(nlp.vocab)
|
||||
doc.from_bytes(byte_string)
|
Loading…
Reference in New Issue