mirror of https://github.com/explosion/spaCy.git
Update section on new v2.0 features
This commit is contained in:
parent
f4658ff053
commit
c25f3133ca
|
@ -8,6 +8,65 @@ p
|
|||
|
||||
+h(2, "features") New features
|
||||
|
||||
+h(3, "features-pipelines") Improved processing pipelines
|
||||
|
||||
+aside-code("Example").
|
||||
# Modify an existing pipeline
|
||||
nlp = spacy.load('en')
|
||||
nlp.pipeline.append(my_component)
|
||||
|
||||
# Register a factory to create a component
|
||||
spacy.set_factory('my_factory', my_factory)
|
||||
nlp = Language(pipeline=['my_factory', mycomponent])
|
||||
|
||||
p
|
||||
| It's now much easier to customise the pipeline with your own components.
|
||||
| Components are functions that receive a #[code Doc] object, modify and
|
||||
| return it. If your component is stateful, you'll want to create a new one
|
||||
| for each pipeline. You can do that by defining and registering a factory
|
||||
| which receives the shared #[code Vocab] object and returns a component.
|
||||
|
||||
p
|
||||
| spaCy's default components – the vectorizer, tagger, parser and entity
|
||||
| recognizer, can be added to your pipeline by using their string IDs.
|
||||
| This way, you won't have to worry about finding and implementing them –
|
||||
| to use the default tagger, simply add #[code "tagger"] to the pipeline,
|
||||
| and spaCy will know what to do.
|
||||
|
||||
+infobox
|
||||
| #[strong API:] #[+api("language") #[code Language]]
|
||||
| #[strong Usage:] #[+a("/docs/usage/language-processing-pipeline") Processing text]
|
||||
|
||||
+h(3, "features-serializer") Saving, loading and serialization
|
||||
|
||||
+aside-code("Example").
|
||||
nlp = spacy.load('en') # shortcut link
|
||||
nlp = spacy.load('en_core_web_sm') # package
|
||||
nlp = spacy.load('/path/to/en') # unicode path
|
||||
nlp = spacy.load(Path('/path/to/en')) # pathlib Path
|
||||
|
||||
nlp.to_disk('/path/to/nlp')
|
||||
nlp = English().from_disk('/path/to/nlp')
|
||||
|
||||
p
|
||||
| spay's serialization API has been made consistent across classes and
|
||||
| objects. All container classes and pipeline components now have a
|
||||
| #[code to_bytes()], #[code from_bytes()], #[code to_disk()] and
|
||||
| #[code from_disk()] method that supports the Pickle protocol.
|
||||
|
||||
p
|
||||
| The improved #[code spacy.load] makes loading models easier and more
|
||||
| transparent. You can load a model by supplying its
|
||||
| #[+a("/docs/usage/models#usage") shortcut link], the name of an installed
|
||||
| #[+a("/docs/usage/saving-loading#generating") model package] or a path.
|
||||
| The #[code Language] class to initialise will be determined based on the
|
||||
| model's settings. For a blank language, you can import the class directly,
|
||||
| e.g. #[code from spacy.lang.en import English].
|
||||
|
||||
+infobox
|
||||
| #[strong API:] #[+api("spacy#load") #[code spacy.load]], #[+api("binder") #[code Binder]]
|
||||
| #[strong Usage:] #[+a("/docs/usage/saving-loading") Saving and loading]
|
||||
|
||||
+h(3, "features-displacy") displaCy visualizer with Jupyter support
|
||||
|
||||
+aside-code("Example").
|
||||
|
@ -28,33 +87,6 @@ p
|
|||
| #[strong API:] #[+api("displacy") #[code displacy]]
|
||||
| #[strong Usage:] #[+a("/docs/usage/visualizers") Visualizing spaCy]
|
||||
|
||||
+h(3, "features-loading") Loading
|
||||
|
||||
+aside-code("Example").
|
||||
nlp = spacy.load('en') # shortcut link
|
||||
nlp = spacy.load('en_core_web_sm') # package
|
||||
nlp = spacy.load('/path/to/en') # unicode path
|
||||
nlp = spacy.load(Path('/path/to/en')) # pathlib Path
|
||||
|
||||
p
|
||||
| The improved #[code spacy.load] makes loading models easier and more
|
||||
| transparent. You can load a model by supplying its
|
||||
| #[+a("/docs/usage/models#usage") shortcut link], the name of an installed
|
||||
| #[+a("/docs/usage/saving-loading#generating") model package], a unicode
|
||||
| path or a #[code Path]-like object. spaCy will try resolving the load
|
||||
| argument in this order. The #[code path] keyword argument is now deprecated.
|
||||
|
||||
p
|
||||
| The #[code Language] class to initialise will be determined based on the
|
||||
| model's settings. If no model is found, spaCy will let you know and won't
|
||||
| just return an empty #[code Language] object anymore. If you want a blank
|
||||
| language, you can always import the class directly, e.g.
|
||||
| #[code from spacy.lang.en import English].
|
||||
|
||||
+infobox
|
||||
| #[strong API:] #[+api("spacy#load") #[code spacy.load]]
|
||||
| #[strong Usage:] #[+a("/docs/usage/saving-loading") Saving and loading]
|
||||
|
||||
+h(3, "features-language") Improved language data and lazy loading
|
||||
|
||||
p
|
||||
|
@ -65,46 +97,15 @@ p
|
|||
| complex regular expressions. The language data has also been tidied up
|
||||
| and simplified. It's now also possible to overwrite the functions that
|
||||
| compute lexical attributes like #[code like_num], and supply
|
||||
| language-specific syntax iterators, e.g. to determine noun chunks.
|
||||
| language-specific syntax iterators, e.g. to determine noun chunks. spaCy
|
||||
| now also supports simple lookup-based lemmatization. The data is stored
|
||||
| in a dictionary mapping a string to its lemma.
|
||||
|
||||
+infobox
|
||||
| #[strong API:] #[+api("language") #[code Language]]
|
||||
| #[strong Code:] #[+src(gh("spaCy", "spacy/lang")) spacy/lang]
|
||||
| #[strong Usage:] #[+a("/docs/usage/adding-languages") Adding languages]
|
||||
|
||||
+h(3, "features-pipelines") Improved processing pipelines
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.language import Language
|
||||
nlp = Language(pipeline=['token_vectors', 'tags',
|
||||
'dependencies'])
|
||||
|
||||
+infobox
|
||||
| #[strong API:] #[+api("language") #[code Language]]
|
||||
| #[strong Usage:] #[+a("/docs/usage/processing-text") Processing text]
|
||||
|
||||
+h(3, "features-lemmatizer") Simple lookup-based lemmatization
|
||||
|
||||
+aside-code("Example").
|
||||
LOOKUP = {
|
||||
"aba": "abar",
|
||||
"ababa": "abar",
|
||||
"ababais": "abar",
|
||||
"ababan": "abar",
|
||||
"ababanes": "ababán"
|
||||
}
|
||||
|
||||
p
|
||||
| spaCy now supports simple lookup-based lemmatization. The data is stored
|
||||
| in a dictionary mapping a string to its lemma. To determine a token's
|
||||
| lemma, spaCy simply looks it up in the table. The lookup lemmatizer can
|
||||
| be imported from #[code spacy.lemmatizerlookup]. It's initialised with
|
||||
| the lookup table, and should be returned by the #[code create_lemmatizer]
|
||||
| classmethod of the language's defaults.
|
||||
|
||||
+infobox
|
||||
| #[strong API:] #[+api("language") #[code Language]]
|
||||
| #[strong Usage:] #[+a("/docs/usage/adding-languages") Adding languages]
|
||||
|
||||
+h(3, "features-matcher") Revised matcher API
|
||||
|
||||
+aside-code("Example").
|
||||
|
@ -129,12 +130,6 @@ p
|
|||
| #[strong API:] #[+api("matcher") #[code Matcher]]
|
||||
| #[strong Usage:] #[+a("/docs/usage/rule-based-matching") Rule-based matching]
|
||||
|
||||
+h(3, "features-serializer") Serialization
|
||||
|
||||
+infobox
|
||||
| #[strong API:] #[+api("serializer") #[code Serializer]]
|
||||
| #[strong Usage:] #[+a("/docs/usage/saving-loading") Saving and loading]
|
||||
|
||||
+h(3, "features-models") Neural network models for English, German, French and Spanish
|
||||
|
||||
+infobox
|
||||
|
|
Loading…
Reference in New Issue