mirror of https://github.com/explosion/spaCy.git
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
c0d90f52f7
16
README.rst
16
README.rst
|
@ -4,12 +4,10 @@ spaCy: Industrial-strength NLP
|
|||
spaCy is a library for advanced natural language processing in Python and
|
||||
Cython. spaCy is built on the very latest research, but it isn't researchware.
|
||||
It was designed from day one to be used in real products. spaCy currently supports
|
||||
English, German and French, as well as tokenization for Spanish, Italian,
|
||||
Portuguese, Dutch, Swedish, Finnish, Norwegian, Hungarian, Bengali, Hebrew,
|
||||
Chinese and Japanese. It's commercial open-source software, released under the
|
||||
MIT license.
|
||||
|
||||
📊 **Help us improve the library!** `Take the spaCy user survey <https://survey.spacy.io>`_.
|
||||
English, German, French and Spanish, as well as tokenization for Italian,
|
||||
Portuguese, Dutch, Swedish, Finnish, Norwegian, Danish, Hungarian, Polish,
|
||||
Bengali, Hebrew, Chinese and Japanese. It's commercial open-source software,
|
||||
released under the MIT license.
|
||||
|
||||
💫 **Version 1.8 out now!** `Read the release notes here. <https://github.com/explosion/spaCy/releases/>`_
|
||||
|
||||
|
@ -85,7 +83,7 @@ Features
|
|||
* GIL-free **multi-threading**
|
||||
* Efficient binary serialization
|
||||
* Easy **deep learning** integration
|
||||
* Statistical models for **English** and **German**
|
||||
* Statistical models for **English**, **German**, **French** and **Spanish**
|
||||
* State-of-the-art speed
|
||||
* Robust, rigorously evaluated accuracy
|
||||
|
||||
|
@ -197,7 +195,7 @@ To load a model, use ``spacy.load()`` with the model's shortcut link:
|
|||
.. code:: python
|
||||
|
||||
import spacy
|
||||
nlp = spacy.load('en_default')
|
||||
nlp = spacy.load('en')
|
||||
doc = nlp(u'This is a sentence.')
|
||||
|
||||
If you've installed a model via pip, you can also ``import`` it directly and
|
||||
|
@ -313,7 +311,7 @@ and ``--model`` are optional and enable additional tests:
|
|||
# make sure you are using recent pytest version
|
||||
python -m pip install -U pytest
|
||||
|
||||
python -m pytest <spacy-directory> --vectors --models --slow
|
||||
python -m pytest <spacy-directory>
|
||||
|
||||
🛠 Changelog
|
||||
============
|
||||
|
|
|
@ -1,15 +1,15 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from ...attrs import HEAD, DEP
|
||||
from ...symbols import nsubj, dobj, amod, nmod, conj, cc, root
|
||||
from ...syntax.iterators import english_noun_chunks
|
||||
from ..util import get_doc
|
||||
from ....attrs import HEAD, DEP
|
||||
from ....symbols import nsubj, dobj, amod, nmod, conj, cc, root
|
||||
from ....lang.en.syntax_iterators import SYNTAX_ITERATORS
|
||||
from ...util import get_doc
|
||||
|
||||
import numpy
|
||||
|
||||
|
||||
def test_doc_noun_chunks_not_nested(en_tokenizer):
|
||||
def test_en_noun_chunks_not_nested(en_tokenizer):
|
||||
text = "Peter has chronic command and control issues"
|
||||
heads = [1, 0, 4, 3, -1, -2, -5]
|
||||
deps = ['nsubj', 'ROOT', 'amod', 'nmod', 'cc', 'conj', 'dobj']
|
||||
|
@ -21,7 +21,7 @@ def test_doc_noun_chunks_not_nested(en_tokenizer):
|
|||
[HEAD, DEP],
|
||||
numpy.asarray([[1, nsubj], [0, root], [4, amod], [3, nmod], [-1, cc],
|
||||
[-2, conj], [-5, dobj]], dtype='uint64'))
|
||||
tokens.noun_chunks_iterator = english_noun_chunks
|
||||
tokens.noun_chunks_iterator = SYNTAX_ITERATORS['noun_chunks']
|
||||
word_occurred = {}
|
||||
for chunk in tokens.noun_chunks:
|
||||
for word in chunk:
|
|
@ -251,7 +251,7 @@ p
|
|||
+cell #[code lang.xx.lex_attrs]
|
||||
|
||||
+row
|
||||
+cell #[code syntax.syntax_iterators]
|
||||
+cell #[code syntax.iterators]
|
||||
+cell #[code lang.xx.syntax_iterators]
|
||||
|
||||
+row
|
||||
|
|
Loading…
Reference in New Issue