mirror of https://github.com/explosion/spaCy.git
Merge pull request #5787 from adrianeboyd/docs/morphologizer
Initial draft of Morphologizer API docs
This commit is contained in:
commit
be476e495e
|
@ -5,10 +5,14 @@ source: spacy/pipeline/morphologizer.pyx
|
|||
new: 3
|
||||
---
|
||||
|
||||
A trainable pipeline component to predict morphological features. This class is
|
||||
a subclass of `Pipe` and follows the same API. The component is also available
|
||||
via the string name `"morphologizer"`. After initialization, it is typically
|
||||
added to the processing pipeline using [`nlp.add_pipe`](/api/language#add_pipe).
|
||||
A trainable pipeline component to predict morphological features and
|
||||
coarse-grained POS tags following the Universal Dependencies
|
||||
[UPOS](https://universaldependencies.org/u/pos/index.html) and
|
||||
[FEATS](https://universaldependencies.org/format.html#morphological-annotation)
|
||||
annotation guidelines. This class is a subclass of `Pipe` and follows the same
|
||||
API. The component is also available via the string name `"morphologizer"`.
|
||||
After initialization, it is typically added to the processing pipeline using
|
||||
[`nlp.add_pipe`](/api/language#add_pipe).
|
||||
|
||||
## Default config {#config}
|
||||
|
||||
|
@ -21,3 +25,322 @@ custom models, check out the [training config](/usage/training#config) docs.
|
|||
```python
|
||||
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/defaults/morphologizer_defaults.cfg
|
||||
```
|
||||
|
||||
## Morphologizer.\_\_init\_\_ {#init tag="method"}
|
||||
|
||||
Initialize the morphologizer.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> # Construction via create_pipe
|
||||
> morphologizer = nlp.create_pipe("morphologizer")
|
||||
>
|
||||
> # Construction from class
|
||||
> from spacy.pipeline import Morphologizer
|
||||
> morphologizer = Morphologizer()
|
||||
> ```
|
||||
|
||||
|
||||
Create a new pipeline instance. In your application, you would normally use a
|
||||
shortcut for this and instantiate the component using its string name and
|
||||
[`nlp.create_pipe`](/api/language#create_pipe).
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | -------- | ------------------------------------------------------------------------------- |
|
||||
| `vocab` | `Vocab` | The shared vocabulary. |
|
||||
| `model` | `Model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. |
|
||||
| `**cfg` | - | Configuration parameters. |
|
||||
| **RETURNS** | `Morphologizer` | The newly constructed object. |
|
||||
|
||||
## Morphologizer.\_\_call\_\_ {#call tag="method"}
|
||||
|
||||
Apply the pipe to one document. The document is modified in place, and returned.
|
||||
This usually happens under the hood when the `nlp` object is called on a text
|
||||
and all pipeline components are applied to the `Doc` in order. Both
|
||||
[`__call__`](/api/morphologizer#call) and [`pipe`](/api/morphologizer#pipe) delegate to the
|
||||
[`predict`](/api/morphologizer#predict) and
|
||||
[`set_annotations`](/api/morphologizer#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> doc = nlp("This is a sentence.")
|
||||
> # This usually happens under the hood
|
||||
> processed = morphologizer(doc)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----- | ------------------------ |
|
||||
| `doc` | `Doc` | The document to process. |
|
||||
| **RETURNS** | `Doc` | The processed document. |
|
||||
|
||||
## Morphologizer.pipe {#pipe tag="method"}
|
||||
|
||||
Apply the pipe to a stream of documents. This usually happens under the hood
|
||||
when the `nlp` object is called on a text and all pipeline components are
|
||||
applied to the `Doc` in order. Both [`__call__`](/api/morphologizer#call) and
|
||||
[`pipe`](/api/morphologizer#pipe) delegate to the [`predict`](/api/morphologizer#predict) and
|
||||
[`set_annotations`](/api/morphologizer#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> for doc in morphologizer.pipe(docs, batch_size=50):
|
||||
> pass
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------ | --------------- | ------------------------------------------------------ |
|
||||
| `stream` | `Iterable[Doc]` | A stream of documents. |
|
||||
| `batch_size` | int | The number of texts to buffer. Defaults to `128`. |
|
||||
| **YIELDS** | `Doc` | Processed documents in the order of the original text. |
|
||||
|
||||
## Morphologizer.predict {#predict tag="method"}
|
||||
|
||||
Apply the pipeline's model to a batch of docs, without modifying them.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> scores = morphologizer.predict([doc1, doc2])
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | --------------- | ----------------------------------------- |
|
||||
| `docs` | `Iterable[Doc]` | The documents to predict. |
|
||||
| **RETURNS** | - | The model's prediction for each document. |
|
||||
|
||||
## Morphologizer.set_annotations {#set_annotations tag="method"}
|
||||
|
||||
Modify a batch of documents, using pre-computed scores.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> scores = morphologizer.predict([doc1, doc2])
|
||||
> morphologizer.set_annotations([doc1, doc2], scores)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------- | --------------- | ------------------------------------------------ |
|
||||
| `docs` | `Iterable[Doc]` | The documents to modify. |
|
||||
| `scores` | - | The scores to set, produced by `Morphologizer.predict`. |
|
||||
|
||||
## Morphologizer.update {#update tag="method"}
|
||||
|
||||
Learn from a batch of documents and gold-standard information, updating the
|
||||
pipe's model. Delegates to [`predict`](/api/morphologizer#predict) and
|
||||
[`get_loss`](/api/morphologizer#get_loss).
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab, morphologizer_model)
|
||||
> optimizer = nlp.begin_training()
|
||||
> losses = morphologizer.update(examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------------- | ------------------- | ------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `examples` | `Iterable[Example]` | A batch of [`Example`](/api/example) objects to learn from. |
|
||||
| _keyword-only_ | | |
|
||||
| `drop` | float | The dropout rate. |
|
||||
| `set_annotations` | bool | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/morphologizer#set_annotations). |
|
||||
| `sgd` | `Optimizer` | The [`Optimizer`](https://thinc.ai/docs/api-optimizers) object. |
|
||||
| `losses` | `Dict[str, float]` | Optional record of the loss during training. The value keyed by the model's name is updated. |
|
||||
| **RETURNS** | `Dict[str, float]` | The updated `losses` dictionary. |
|
||||
|
||||
## Morphologizer.get_loss {#get_loss tag="method"}
|
||||
|
||||
Find the loss and gradient of loss for the batch of documents and their
|
||||
predicted scores.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> scores = morphologizer.predict([eg.predicted for eg in examples])
|
||||
> loss, d_loss = morphologizer.get_loss(examples, scores)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ------------------- | --------------------------------------------------- |
|
||||
| `examples` | `Iterable[Example]` | The batch of examples. |
|
||||
| `scores` | - | Scores representing the model's predictions. |
|
||||
| **RETURNS** | tuple | The loss and the gradient, i.e. `(loss, gradient)`. |
|
||||
|
||||
## Morphologizer.begin_training {#begin_training tag="method"}
|
||||
|
||||
Initialize the pipe for training, using data examples if available. Return an
|
||||
[`Optimizer`](https://thinc.ai/docs/api-optimizers) object.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> nlp.pipeline.append(morphologizer)
|
||||
> optimizer = morphologizer.begin_training(pipeline=nlp.pipeline)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------------- | ----------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `get_examples` | `Iterable[Example]` | Optional gold-standard annotations in the form of [`Example`](/api/example) objects. |
|
||||
| `pipeline` | `List[(str, callable)]` | Optional list of pipeline components that this component is part of. |
|
||||
| `sgd` | `Optimizer` | An optional [`Optimizer`](https://thinc.ai/docs/api-optimizers) object. Will be created via [`create_optimizer`](/api/morphologizer#create_optimizer) if not set. |
|
||||
| **RETURNS** | `Optimizer` | An optimizer. |
|
||||
|
||||
## Morphologizer.create_optimizer {#create_optimizer tag="method"}
|
||||
|
||||
Create an optimizer for the pipeline component.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> optimizer = morphologizer.create_optimizer()
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----------- | --------------------------------------------------------------- |
|
||||
| **RETURNS** | `Optimizer` | The [`Optimizer`](https://thinc.ai/docs/api-optimizers) object. |
|
||||
|
||||
## Morphologizer.use_params {#use_params tag="method, contextmanager"}
|
||||
|
||||
Modify the pipe's model, to use the given parameter values.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> with morphologizer.use_params():
|
||||
> morphologizer.to_disk("/best_model")
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
|
||||
| `params` | - | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
|
||||
|
||||
## Morphologizer.add_label {#add_label tag="method"}
|
||||
|
||||
Add a new label to the pipe. If the `Morphologizer` should set annotations for
|
||||
both `pos` and `morph`, the label should include the UPOS as the feature `POS`.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin")
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------- | ---- | --------------------------------------------------------------- |
|
||||
| `label` | str | The label to add. |
|
||||
|
||||
## Morphologizer.to_disk {#to_disk tag="method"}
|
||||
|
||||
Serialize the pipe to disk.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> morphologizer.to_disk("/path/to/morphologizer")
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| --------- | ------------ | --------------------------------------------------------------------------------------------------------------------- |
|
||||
| `path` | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
||||
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
||||
|
||||
## Morphologizer.from_disk {#from_disk tag="method"}
|
||||
|
||||
Load the pipe from disk. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> morphologizer.from_disk("/path/to/morphologizer")
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ------------ | -------------------------------------------------------------------------- |
|
||||
| `path` | str / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
|
||||
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
||||
| **RETURNS** | `Morphologizer` | The modified `Morphologizer` object. |
|
||||
|
||||
## Morphologizer.to_bytes {#to_bytes tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> morphologizer_bytes = morphologizer.to_bytes()
|
||||
> ```
|
||||
|
||||
Serialize the pipe to a bytestring.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----- | ------------------------------------------------------------------------- |
|
||||
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
||||
| **RETURNS** | bytes | The serialized form of the `Morphologizer` object. |
|
||||
|
||||
## Morphologizer.from_bytes {#from_bytes tag="method"}
|
||||
|
||||
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer_bytes = morphologizer.to_bytes()
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> morphologizer.from_bytes(morphologizer_bytes)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------ | -------- | ------------------------------------------------------------------------- |
|
||||
| `bytes_data` | bytes | The data to load from. |
|
||||
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
||||
| **RETURNS** | `Morphologizer` | The `Morphologizer` object. |
|
||||
|
||||
## Morphologizer.labels {#labels tag="property"}
|
||||
|
||||
The labels currently added to the component in Universal Dependencies [FEATS
|
||||
format](https://universaldependencies.org/format.html#morphological-annotation).
|
||||
Note that even for a blank component, this will always include the internal
|
||||
empty label `_`. If POS features are used, the labels will include the
|
||||
coarse-grained POS as the feature `POS`.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin")
|
||||
> assert "Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin" in morphologizer.labels
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----- | ---------------------------------- |
|
||||
| **RETURNS** | tuple | The labels added to the component. |
|
||||
|
||||
## Serialization fields {#serialization-fields}
|
||||
|
||||
During serialization, spaCy will export several data fields used to restore
|
||||
different aspects of the object. If needed, you can exclude them from
|
||||
serialization by passing in the string names via the `exclude` argument.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> data = morphologizer.to_disk("/path", exclude=["vocab"])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| --------- | ------------------------------------------------------------------------------------------ |
|
||||
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||||
| `cfg` | The config file. You usually don't want to exclude this. |
|
||||
| `model` | The binary model data. You usually don't want to exclude this. |
|
||||
|
|
Loading…
Reference in New Issue