mirror of https://github.com/explosion/spaCy.git
Add tensorizer training example
This commit is contained in:
parent
2527ba68e5
commit
baf7feae68
|
@ -0,0 +1,45 @@
|
|||
'''Not sure if this is useful -- try training the Tensorizer component.'''
|
||||
import plac
|
||||
import spacy
|
||||
import thinc.extra.datasets
|
||||
from spacy.util import minibatch
|
||||
import tqdm
|
||||
|
||||
|
||||
def load_imdb():
|
||||
nlp = spacy.blank('en')
|
||||
train, dev = thinc.extra.datasets.imdb()
|
||||
train_texts, _ = zip(*train)
|
||||
dev_texts, _ = zip(*dev)
|
||||
nlp.add_pipe(nlp.create_pipe('sentencizer'))
|
||||
return list(get_sentences(nlp, train_texts)), list(get_sentences(nlp, dev_texts))
|
||||
|
||||
|
||||
def get_sentences(nlp, texts):
|
||||
for doc in nlp.pipe(texts):
|
||||
for sent in doc.sents:
|
||||
yield sent.text
|
||||
|
||||
|
||||
def main():
|
||||
print("Load data")
|
||||
train_texts, dev_texts = load_imdb()
|
||||
train_texts = train_texts[:1000]
|
||||
print("Load vectors")
|
||||
nlp = spacy.load('en_vectors_web_lg')
|
||||
print("Start training")
|
||||
nlp.add_pipe(nlp.create_pipe('tagger'))
|
||||
tensorizer = nlp.create_pipe('tensorizer')
|
||||
nlp.add_pipe(tensorizer)
|
||||
optimizer = nlp.begin_training()
|
||||
|
||||
for i in range(10):
|
||||
losses = {}
|
||||
for i, batch in enumerate(minibatch(tqdm.tqdm(train_texts))):
|
||||
docs = [nlp.make_doc(text) for text in batch]
|
||||
tensorizer.update(docs, None, losses=losses, sgd=optimizer, drop=0.5)
|
||||
if i % 10 == 0:
|
||||
print(losses)
|
||||
|
||||
if __name__ == '__main__':
|
||||
plac.call(main)
|
Loading…
Reference in New Issue