diff --git a/bin/load_reddit.py b/bin/load_reddit.py new file mode 100644 index 000000000..73ae0b6b5 --- /dev/null +++ b/bin/load_reddit.py @@ -0,0 +1,92 @@ +# coding: utf8 +from __future__ import unicode_literals + +import bz2 +import regex as re +import ujson +import sys +import random +import datetime +import plac +from pathlib import Path + +_unset = object() + + +class Reddit(object): + """Stream cleaned comments from Reddit.""" + pre_format_re = re.compile(r'^[\`\*\~]') + post_format_re = re.compile(r'[\`\*\~]$') + url_re = re.compile(r'\[([^]]+)\]\(%%URL\)') + link_re = re.compile(r'\[([^]]+)\]\(https?://[^\)]+\)') + + def __init__(self, file_path, meta_keys={'subreddit': 'section'}): + """ + file_path (unicode / Path): Path to archive or directory of archives. + meta_keys (dict): Meta data key included in the Reddit corpus, mapped + to display name in Prodigy meta. + RETURNS (Reddit): The Reddit loader. + """ + self.meta = meta_keys + file_path = Path(file_path) + if not file_path.exists(): + raise IOError("Can't find file path: {}".format(file_path)) + if not file_path.is_dir(): + self.files = [file_path] + else: + self.files = list(file_path.iterdir()) + + def __iter__(self): + for file_path in self.iter_files(): + with bz2.open(str(file_path)) as f: + for line in f: + line = line.strip() + if not line: + continue + comment = ujson.loads(line) + if self.is_valid(comment): + text = self.strip_tags(comment['body']) + yield {'text': text} + + def get_meta(self, item): + return {name: item.get(key, 'n/a') for key, name in self.meta.items()} + + def iter_files(self): + for file_path in self.files: + yield file_path + + def strip_tags(self, text): + text = self.link_re.sub(r'\1', text) + text = text.replace('>', '>').replace('<', '<') + text = self.pre_format_re.sub('', text) + text = self.post_format_re.sub('', text) + text = re.sub(r'\s+', ' ', text) + return text.strip() + + def is_valid(self, comment): + return comment['body'] is not None \ + and comment['body'] != '[deleted]' \ + and comment['body'] != '[removed]' + + +def main(path): + reddit = Reddit(path) + for comment in reddit: + print(ujson.dumps(comment)) + + +if __name__ == '__main__': + import socket + try: + BrokenPipeError + except NameError: + BrokenPipeError = socket.error + try: + plac.call(main) + except BrokenPipeError: + import os, sys + # Python flushes standard streams on exit; redirect remaining output + # to devnull to avoid another BrokenPipeError at shutdown + devnull = os.open(os.devnull, os.O_WRONLY) + os.dup2(devnull, sys.stdout.fileno()) + sys.exit(1) # Python exits with error code 1 on EPIPE diff --git a/spacy/__main__.py b/spacy/__main__.py index 897d890c2..5d712ea15 100644 --- a/spacy/__main__.py +++ b/spacy/__main__.py @@ -6,7 +6,7 @@ from __future__ import print_function if __name__ == '__main__': import plac import sys - from spacy.cli import download, link, info, package, train, convert + from spacy.cli import download, link, info, package, train, pretrain, convert from spacy.cli import vocab, init_model, profile, evaluate, validate from spacy.cli import ud_train, ud_evaluate from spacy.util import prints @@ -16,6 +16,7 @@ if __name__ == '__main__': 'link': link, 'info': info, 'train': train, + 'pretrain': pretrain, 'ud-train': ud_train, 'evaluate': evaluate, 'ud-evaluate': ud_evaluate, diff --git a/spacy/cli/__init__.py b/spacy/cli/__init__.py index 2788ffc86..5497c55ce 100644 --- a/spacy/cli/__init__.py +++ b/spacy/cli/__init__.py @@ -4,6 +4,7 @@ from .link import link from .package import package from .profile import profile from .train import train +from .pretrain import pretrain from .evaluate import evaluate from .convert import convert from .vocab import make_vocab as vocab diff --git a/spacy/cli/pretrain.py b/spacy/cli/pretrain.py new file mode 100644 index 000000000..f46d41452 --- /dev/null +++ b/spacy/cli/pretrain.py @@ -0,0 +1,206 @@ +'''This script is experimental. + +Try pre-training the CNN component of the text categorizer using a cheap +language modelling-like objective. Specifically, we load pre-trained vectors +(from something like word2vec, GloVe, FastText etc), and use the CNN to +predict the tokens' pre-trained vectors. This isn't as easy as it sounds: +we're not merely doing compression here, because heavy dropout is applied, +including over the input words. This means the model must often (50% of the time) +use the context in order to predict the word. + +To evaluate the technique, we're pre-training with the 50k texts from the IMDB +corpus, and then training with only 100 labels. Note that it's a bit dirty to +pre-train with the development data, but also not *so* terrible: we're not using +the development labels, after all --- only the unlabelled text. +''' +from __future__ import print_function, unicode_literals +import plac +import random +import numpy +import time +import ujson as json +from pathlib import Path +import sys +from collections import Counter + +import spacy +from spacy.attrs import ID +from spacy.util import minibatch, minibatch_by_words, use_gpu, compounding, ensure_path +from spacy._ml import Tok2Vec, flatten, chain, zero_init, create_default_optimizer +from thinc.v2v import Affine + + +def prefer_gpu(): + used = spacy.util.use_gpu(0) + if used is None: + return False + else: + import cupy.random + cupy.random.seed(0) + return True + + +def load_texts(path): + '''Load inputs from a jsonl file. + + Each line should be a dict like {"text": "..."} + ''' + path = ensure_path(path) + with path.open('r', encoding='utf8') as file_: + texts = [json.loads(line)['text'] for line in file_] + random.shuffle(texts) + return texts + +def stream_texts(): + for line in sys.stdin: + yield json.loads(line)['text'] + + +def make_update(model, docs, optimizer, drop=0.): + """Perform an update over a single batch of documents. + + docs (iterable): A batch of `Doc` objects. + drop (float): The droput rate. + optimizer (callable): An optimizer. + RETURNS loss: A float for the loss. + """ + predictions, backprop = model.begin_update(docs, drop=drop) + loss, gradients = get_vectors_loss(model.ops, docs, predictions) + backprop(gradients, sgd=optimizer) + return loss + + +def get_vectors_loss(ops, docs, prediction): + """Compute a mean-squared error loss between the documents' vectors and + the prediction. + + Note that this is ripe for customization! We could compute the vectors + in some other word, e.g. with an LSTM language model, or use some other + type of objective. + """ + # The simplest way to implement this would be to vstack the + # token.vector values, but that's a bit inefficient, especially on GPU. + # Instead we fetch the index into the vectors table for each of our tokens, + # and look them up all at once. This prevents data copying. + ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs]) + target = docs[0].vocab.vectors.data[ids] + d_scores = (prediction - target) / prediction.shape[0] + # Don't want to return a cupy object here + loss = float((d_scores**2).sum()) + return loss, d_scores + + +def create_pretraining_model(nlp, tok2vec): + '''Define a network for the pretraining. We simply add an output layer onto + the tok2vec input model. The tok2vec input model needs to be a model that + takes a batch of Doc objects (as a list), and returns a list of arrays. + Each array in the output needs to have one row per token in the doc. + ''' + output_size = nlp.vocab.vectors.data.shape[1] + output_layer = zero_init(Affine(output_size, drop_factor=0.0)) + # This is annoying, but the parser etc have the flatten step after + # the tok2vec. To load the weights in cleanly, we need to match + # the shape of the models' components exactly. So what we cann + # "tok2vec" has to be the same set of processes as what the components do. + tok2vec = chain(tok2vec, flatten) + model = chain( + tok2vec, + output_layer + ) + model.tok2vec = tok2vec + model.output_layer = output_layer + model.begin_training([nlp.make_doc('Give it a doc to infer shapes')]) + return model + + +class ProgressTracker(object): + def __init__(self, frequency=100000): + self.loss = 0. + self.nr_word = 0 + self.words_per_epoch = Counter() + self.frequency = frequency + self.last_time = time.time() + self.last_update = 0 + + def update(self, epoch, loss, docs): + self.loss += loss + words_in_batch = sum(len(doc) for doc in docs) + self.words_per_epoch[epoch] += words_in_batch + self.nr_word += words_in_batch + words_since_update = self.nr_word - self.last_update + if words_since_update >= self.frequency: + wps = words_since_update / (time.time() - self.last_time) + self.last_update = self.nr_word + self.last_time = time.time() + status = (epoch, self.nr_word, '%.5f' % self.loss, int(wps)) + return status + else: + return None + + +@plac.annotations( + texts_loc=("Path to jsonl file with texts to learn from", "positional", None, str), + vectors_model=("Name or path to vectors model to learn from"), + output_dir=("Directory to write models each epoch", "positional", None, str), + width=("Width of CNN layers", "option", "cw", int), + depth=("Depth of CNN layers", "option", "cd", int), + embed_rows=("Embedding rows", "option", "er", int), + dropout=("Dropout", "option", "d", float), + seed=("Seed for random number generators", "option", "s", float), + nr_iter=("Number of iterations to pretrain", "option", "i", int), +) +def pretrain(texts_loc, vectors_model, output_dir, width=128, depth=4, + embed_rows=1000, dropout=0.2, nr_iter=10, seed=0): + """ + Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components, + using an approximate language-modelling objective. Specifically, we load + pre-trained vectors, and train a component like a CNN, BiLSTM, etc to predict + vectors which match the pre-trained ones. The weights are saved to a directory + after each epoch. You can then pass a path to one of these pre-trained weights + files to the 'spacy train' command. + + This technique may be especially helpful if you have little labelled data. + However, it's still quite experimental, so your mileage may vary. + + To load the weights back in during 'spacy train', you need to ensure + all settings are the same between pretraining and training. The API and + errors around this need some improvement. + """ + config = dict(locals()) + output_dir = ensure_path(output_dir) + random.seed(seed) + numpy.random.seed(seed) + if not output_dir.exists(): + output_dir.mkdir() + with (output_dir / 'config.json').open('w') as file_: + file_.write(json.dumps(config)) + has_gpu = prefer_gpu() + nlp = spacy.load(vectors_model) + model = create_pretraining_model(nlp, + Tok2Vec(width, embed_rows, + conv_depth=depth, + pretrained_vectors=nlp.vocab.vectors.name, + bilstm_depth=0, # Requires PyTorch. Experimental. + cnn_maxout_pieces=2, # You can try setting this higher + subword_features=True)) # Set to False for character models, e.g. Chinese + optimizer = create_default_optimizer(model.ops) + tracker = ProgressTracker() + print('Epoch', '#Words', 'Loss', 'w/s') + texts = stream_texts() if texts_loc == '-' else load_texts(texts_loc) + for epoch in range(nr_iter): + for batch in minibatch(texts, size=64): + docs = [nlp.make_doc(text) for text in batch] + loss = make_update(model, docs, optimizer, drop=dropout) + progress = tracker.update(epoch, loss, docs) + if progress: + print(*progress) + if texts_loc == '-' and tracker.words_per_epoch[epoch] >= 10**6: + break + with model.use_params(optimizer.averages): + with (output_dir / ('model%d.bin' % epoch)).open('wb') as file_: + file_.write(model.tok2vec.to_bytes()) + with (output_dir / 'log.jsonl').open('a') as file_: + file_.write(json.dumps({'nr_word': tracker.nr_word, + 'loss': tracker.loss, 'epoch': epoch})) + if texts_loc != '-': + texts = load_texts(texts_loc) diff --git a/spacy/cli/train.py b/spacy/cli/train.py index a0fb4d28a..01aebfae8 100644 --- a/spacy/cli/train.py +++ b/spacy/cli/train.py @@ -40,9 +40,11 @@ from ..compat import json_dumps version=("Model version", "option", "V", str), meta_path=("Optional path to meta.json. All relevant properties will be " "overwritten.", "option", "m", Path), + init_tok2vec=("Path to pretrained weights for the token-to-vector parts " + "of the models. See 'spacy pretrain'. Experimental.", "option", "t2v", Path), verbose=("Display more information for debug", "option", None, bool)) def train(lang, output_dir, train_data, dev_data, n_iter=30, n_sents=0, - parser_multitasks='', entity_multitasks='', + parser_multitasks='', entity_multitasks='', init_tok2vec=None, use_gpu=-1, vectors=None, no_tagger=False, noise_level=0.0, no_parser=False, no_entities=False, gold_preproc=False, version="0.0.0", meta_path=None, verbose=False): @@ -120,6 +122,9 @@ def train(lang, output_dir, train_data, dev_data, n_iter=30, n_sents=0, for objective in entity_multitasks.split(','): nlp.entity.add_multitask_objective(objective) optimizer = nlp.begin_training(lambda: corpus.train_tuples, device=use_gpu) + if init_tok2vec is not None: + loaded = _load_pretrained_tok2vec(nlp, init_tok2vec) + print("Loaded pretrained tok2vec for:", loaded) nlp._optimizer = None print("Itn. Dep Loss NER Loss UAS NER P. NER R. NER F. Tag % Token % CPU WPS GPU WPS") @@ -199,6 +204,20 @@ def train(lang, output_dir, train_data, dev_data, n_iter=30, n_sents=0, _collate_best_model(meta, output_path, components) +def _load_pretrained_tok2vec(nlp, loc): + """Load pre-trained weights for the 'token-to-vector' part of the component + models, which is typically a CNN. See 'spacy pretrain'. Experimental. + """ + with loc.open('rb') as file_: + weights_data = file_.read() + loaded = [] + for name, component in nlp.pipeline: + if hasattr(component, 'model') and hasattr(component.model, 'tok2vec'): + component.tok2vec.from_bytes(weights_data) + loaded.append(name) + return loaded + + def _collate_best_model(meta, output_path, components): bests = {} for component in components: diff --git a/spacy/syntax/nn_parser.pyx b/spacy/syntax/nn_parser.pyx index 25cab43f8..f421520ce 100644 --- a/spacy/syntax/nn_parser.pyx +++ b/spacy/syntax/nn_parser.pyx @@ -126,6 +126,10 @@ cdef class Parser: def __reduce__(self): return (Parser, (self.vocab, self.moves, self.model), None, None) + + @property + def tok2vec(self): + return self.model.tok2vec @property def move_names(self): diff --git a/spacy/util.py b/spacy/util.py index e32f51add..d0d112c91 100644 --- a/spacy/util.py +++ b/spacy/util.py @@ -465,7 +465,7 @@ def decaying(start, stop, decay): nr_upd += 1 -def minibatch_by_words(items, size, count_words=len): +def minibatch_by_words(items, size, tuples=True, count_words=len): '''Create minibatches of a given number of words.''' if isinstance(size, int): size_ = itertools.repeat(size) @@ -477,13 +477,19 @@ def minibatch_by_words(items, size, count_words=len): batch = [] while batch_size >= 0: try: - doc, gold = next(items) + if tuples: + doc, gold = next(items) + else: + doc = next(items) except StopIteration: if batch: yield batch return batch_size -= count_words(doc) - batch.append((doc, gold)) + if tuples: + batch.append((doc, gold)) + else: + batch.append(doc) if batch: yield batch