* Messily use unsegmented sentences to train the parser

This commit is contained in:
Matthew Honnibal 2015-01-29 04:21:13 +11:00
parent 320b045daa
commit b4348ce1c3
1 changed files with 50 additions and 13 deletions

View File

@ -26,6 +26,7 @@ def read_tokenized_gold(file_):
"""Read a standard CoNLL/MALT-style format"""
sents = []
for sent_str in file_.read().strip().split('\n\n'):
ids = []
words = []
heads = []
labels = []
@ -35,10 +36,11 @@ def read_tokenized_gold(file_):
words.append(word)
if head_idx == -1:
head_idx = i
ids.append(id_)
heads.append(head_idx)
labels.append(label)
tags.append(pos_string)
sents.append((words, heads, labels, tags))
sents.append((ids_, words, heads, labels, tags))
return sents
@ -49,31 +51,62 @@ def read_docparse_gold(file_):
heads = []
labels = []
tags = []
ids = []
lines = sent_str.strip().split('\n')
raw_text = lines[0]
tok_text = lines[1]
for i, line in enumerate(lines[2:]):
word, pos_string, head_idx, label = _parse_line(line)
id_, word, pos_string, head_idx, label = _parse_line(line)
if label == 'root':
label = 'ROOT'
if pos_string == "``":
word = "``"
elif pos_string == "''":
word = "''"
words.append(word)
if head_idx == -1:
head_idx = i
if head_idx < 0:
head_idx = id_
ids.append(id_)
heads.append(head_idx)
labels.append(label)
tags.append(pos_string)
words = tok_text.replace('<SEP>', ' ').replace('<SENT>', ' ').split(' ')
heads = _map_indices_to_tokens(ids, heads)
words = tok_text.replace('<SENT>', ' ').replace('<SEP>', ' ').split()
#print words
#print heads
sents.append((words, heads, labels, tags))
#sent_strings = tok_text.split('<SENT>')
#for sent in sent_strings:
# sent_words = sent.replace('<SEP>', ' ').split(' ')
# sent_heads = []
# sent_labels = []
# sent_tags = []
# sent_ids = []
# while len(sent_heads) < len(sent_words):
# sent_heads.append(heads.pop(0))
# sent_labels.append(labels.pop(0))
# sent_tags.append(tags.pop(0))
# sent_ids.append(ids.pop(0))
# sent_heads = _map_indices_to_tokens(sent_ids, sent_heads)
# sents.append((sent_words, sent_heads, sent_labels, sent_tags))
return sents
def _map_indices_to_tokens(ids, heads):
return [ids.index(head) for head in heads]
def _parse_line(line):
pieces = line.split()
if len(pieces) == 4:
return pieces[0], pieces[1], int(pieces[2]) - 1, pieces[3]
return 0, pieces[0], pieces[1], int(pieces[2]) - 1, pieces[3]
else:
id_ = int(pieces[0])
word = pieces[1]
pos = pieces[3]
head_idx = int(pieces[6]) - 1
head_idx = int(pieces[6])
label = pieces[7]
return word, pos, head_idx, label
return id_, word, pos, head_idx, label
def get_labels(sents):
left_labels = set()
@ -113,7 +146,11 @@ def train(Language, sents, model_dir, n_iter=15, feat_set=u'basic', seed=0):
tags = [nlp.tagger.tag_names.index(tag) for tag in tags]
tokens = nlp.tokenizer.tokens_from_list(words)
nlp.tagger(tokens)
heads_corr += nlp.parser.train_sent(tokens, heads, labels)
try:
heads_corr += nlp.parser.train_sent(tokens, heads, labels, force_gold=False)
except:
print heads
raise
pos_corr += nlp.tagger.train(tokens, tags)
n_tokens += len(tokens)
acc = float(heads_corr) / n_tokens
@ -122,7 +159,6 @@ def train(Language, sents, model_dir, n_iter=15, feat_set=u'basic', seed=0):
random.shuffle(sents)
nlp.parser.model.end_training()
nlp.tagger.model.end_training()
#nlp.parser.model.dump(path.join(dep_model_dir, 'model'), freq_thresh=0)
return acc
@ -131,13 +167,13 @@ def evaluate(Language, dev_loc, model_dir):
n_corr = 0
total = 0
with codecs.open(dev_loc, 'r', 'utf8') as file_:
sents = read_tokenized_gold(file_)
sents = read_docparse_gold(file_)
for words, heads, labels, tags in sents:
tokens = nlp.tokenizer.tokens_from_list(words)
nlp.tagger(tokens)
nlp.parser(tokens)
for i, token in enumerate(tokens):
#print i, token.string, i + token.head, heads[i], labels[i]
#print i, token.orth_, token.head.orth_, tokens[heads[i]].orth_, labels[i], token.head.i == heads[i]
if labels[i] == 'P' or labels[i] == 'punct':
continue
n_corr += token.head.i == heads[i]
@ -150,7 +186,8 @@ PROFILE = False
def main(train_loc, dev_loc, model_dir):
with codecs.open(train_loc, 'r', 'utf8') as file_:
train_sents = read_tokenized_gold(file_)
train_sents = read_docparse_gold(file_)
train_sents = train_sents
if PROFILE:
import cProfile
import pstats