diff --git a/spacy/cli/train.py b/spacy/cli/train.py index 8d322e32d..90decdc12 100644 --- a/spacy/cli/train.py +++ b/spacy/cli/train.py @@ -18,22 +18,6 @@ from .. import util from .. import about -# Take dropout and batch size as generators of values -- dropout -# starts high and decays sharply, to force the optimizer to explore. -# Batch size starts at 1 and grows, so that we make updates quickly -# at the beginning of training. -dropout_rates = util.decaying( - util.env_opt("dropout_from", 0.1), - util.env_opt("dropout_to", 0.1), - util.env_opt("dropout_decay", 0.0), -) -batch_sizes = util.compounding( - util.env_opt("batch_from", 750), - util.env_opt("batch_to", 750), - util.env_opt("batch_compound", 1.001), -) - - @plac.annotations( lang=("Model language", "positional", None, str), output_path=("Output directory to store model in", "positional", None, Path), @@ -120,6 +104,21 @@ def train( if not output_path.exists(): output_path.mkdir() + # Take dropout and batch size as generators of values -- dropout + # starts high and decays sharply, to force the optimizer to explore. + # Batch size starts at 1 and grows, so that we make updates quickly + # at the beginning of training. + dropout_rates = util.decaying( + util.env_opt("dropout_from", 0.1), + util.env_opt("dropout_to", 0.1), + util.env_opt("dropout_decay", 0.0), + ) + batch_sizes = util.compounding( + util.env_opt("batch_from", 100.0), + util.env_opt("batch_to", 1000.0), + util.env_opt("batch_compound", 1.001), + ) + # Set up the base model and pipeline. If a base model is specified, load # the model and make sure the pipeline matches the pipeline setting. If # training starts from a blank model, intitalize the language class.