diff --git a/spacy/cli/train.py b/spacy/cli/train.py index 5c1706341..acf26e548 100644 --- a/spacy/cli/train.py +++ b/spacy/cli/train.py @@ -2,6 +2,7 @@ from __future__ import unicode_literals, division, print_function import plac +import os from pathlib import Path import tqdm from thinc.neural._classes.model import Model @@ -9,7 +10,8 @@ from timeit import default_timer as timer import shutil import srsly from wasabi import Printer -from thinc.rates import slanted_triangular +import contextlib +import random from .._ml import create_default_optimizer from ..attrs import PROB, IS_OOV, CLUSTER, LANG @@ -207,7 +209,7 @@ def train( nlp, noise_level=noise_level, gold_preproc=gold_preproc, max_length=0 ) words_seen = 0 - with tqdm.tqdm(total=n_train_words, leave=False) as pbar: + with _create_progress_bar(n_train_words) as pbar: losses = {} for batch in util.minibatch_by_words(train_docs, size=batch_sizes): if not batch: @@ -220,7 +222,8 @@ def train( drop=next(dropout_rates), losses=losses, ) - pbar.update(sum(len(doc) for doc in docs)) + if not int(os.environ.get('LOG_FRIENDLY', 0)): + pbar.update(sum(len(doc) for doc in docs)) words_seen += sum(len(doc) for doc in docs) with nlp.use_params(optimizer.averages): util.set_env_log(False) @@ -281,6 +284,15 @@ def train( msg.good("Created best model", best_model_path) +@contextlib.contextmanager +def _create_progress_bar(total): + if int(os.environ.get('LOG_FRIENDLY', 0)): + yield + else: + pbar = tqdm.tqdm(total=total, leave=False) + yield pbar + + def _load_vectors(nlp, vectors): util.load_model(vectors, vocab=nlp.vocab) for lex in nlp.vocab: