mirror of https://github.com/explosion/spaCy.git
Work on DyNet example
This commit is contained in:
parent
89df91846c
commit
ae681aa555
|
@ -0,0 +1,190 @@
|
|||
from __future__ import print_function
|
||||
from __future__ import unicode_literals
|
||||
from __future__ import division
|
||||
|
||||
import pathlib
|
||||
import plac
|
||||
import random
|
||||
from collections import Counter
|
||||
import numpy as np
|
||||
|
||||
from collections import defaultdict
|
||||
from itertools import count
|
||||
|
||||
import dynet
|
||||
from dynet import cg
|
||||
|
||||
|
||||
class Vocab:
|
||||
def __init__(self, w2i=None):
|
||||
if w2i is None: w2i = defaultdict(count(0).next)
|
||||
self.w2i = dict(w2i)
|
||||
self.i2w = {i:w for w,i in w2i.iteritems()}
|
||||
@classmethod
|
||||
def from_corpus(cls, corpus):
|
||||
w2i = defaultdict(count(0).next)
|
||||
for sent in corpus:
|
||||
[w2i[word] for word in sent]
|
||||
return Vocab(w2i)
|
||||
|
||||
def size(self):
|
||||
return len(self.w2i.keys())
|
||||
|
||||
|
||||
def read_data(path):
|
||||
with path.open() as file_:
|
||||
sent = []
|
||||
for line in file_:
|
||||
line = line.strip().split()
|
||||
if not line:
|
||||
if sent:
|
||||
yield sent
|
||||
sent = []
|
||||
else:
|
||||
pieces = line
|
||||
w = pieces[1]
|
||||
pos = pieces[3]
|
||||
sent.append((w, pos))
|
||||
|
||||
|
||||
def get_vocab(train, test):
|
||||
words = []
|
||||
tags = []
|
||||
wc = Counter()
|
||||
for s in train:
|
||||
for w, p in s:
|
||||
words.append(w)
|
||||
tags.append(p)
|
||||
wc[w] += 1
|
||||
words.append("_UNK_")
|
||||
#words=[w if wc[w] > 1 else "_UNK_" for w in words]
|
||||
tags.append("_START_")
|
||||
|
||||
for s in test:
|
||||
for w, p in s:
|
||||
words.append(w)
|
||||
vw = Vocab.from_corpus([words])
|
||||
vt = Vocab.from_corpus([tags])
|
||||
UNK = vw.w2i["_UNK_"]
|
||||
return words, tags, wc, vw, vt
|
||||
|
||||
|
||||
class BiTagger(object):
|
||||
def __init__(self, nwords, ntags):
|
||||
self.nwords = nwords
|
||||
self.ntags = ntags
|
||||
|
||||
self._model = dynet.Model()
|
||||
self._sgd = dynet.SimpleSGDTrainer(self._model)
|
||||
|
||||
self._E = self._model.add_lookup_parameters((self.nwords, 128))
|
||||
self._p_t1 = self._model.add_lookup_parameters((self.ntags, 30))
|
||||
|
||||
self._pH = self._model.add_parameters((32, 50*2))
|
||||
self._pO = self._model.add_parameters((self.ntags, 32))
|
||||
|
||||
self._fwd_lstm = dynet.LSTMBuilder(1, 128, 50, self._model)
|
||||
self._bwd_lstm = dynet.LSTMBuilder(1, 128, 50, self._model)
|
||||
|
||||
def __call__(self, doc):
|
||||
dynet.renew_cg()
|
||||
|
||||
wembs = [self._E[word.rank] for word in doc]
|
||||
|
||||
f_state = self._fwd_lstm.initial_state()
|
||||
b_state = self._bwd_lstm.initial_state()
|
||||
|
||||
fw = [x.output() for x in f_state.add_inputs(wembs)]
|
||||
bw = [x.output() for x in b_state.add_inputs(reversed(wembs))]
|
||||
|
||||
H = dynet.parameter(self._pH)
|
||||
O = dynet.parameter(self._pO)
|
||||
|
||||
for i, (f, b) in enumerate(zip(fw, reversed(bw))):
|
||||
r_t = O * (dynet.tanh(H * dynet.concatenate([f, b])))
|
||||
out = dynet.softmax(r_t)
|
||||
doc[i].tag = np.argmax(out.npvalue())
|
||||
|
||||
def update(self, doc, gold):
|
||||
dynet.renew_cg()
|
||||
wembs = [self._E[word.rank] for word in doc]
|
||||
wembs = [dynet.noise(we, 0.1) for we in wembs]
|
||||
|
||||
f_state = self._fwd_lstm.initial_state()
|
||||
b_state = self._bwd_lstm.initial_state()
|
||||
|
||||
fw = [x.output() for x in f_state.add_inputs(wembs)]
|
||||
bw = [x.output() for x in b_state.add_inputs(reversed(wembs))]
|
||||
|
||||
H = dynet.parameter(self._pH)
|
||||
O = dynet.parameter(self._pO)
|
||||
|
||||
errs = []
|
||||
for f, b, t in zip(fw, reversed(bw), tags):
|
||||
f_b = dynet.concatenate([f,b])
|
||||
r_t = O * (dynet.tanh(H * f_b))
|
||||
err = dynet.pickneglogsoftmax(r_t, t)
|
||||
errs.append(err)
|
||||
|
||||
sum_errs = dynet.esum(errs)
|
||||
squared = -sum_errs # * sum_errs
|
||||
loss += sum_errs.scalar_value()
|
||||
sum_errs.backward()
|
||||
sgd.update()
|
||||
|
||||
|
||||
def main(train_loc, dev_loc, model_dir):
|
||||
train_loc = pathlib.Path(train_loc)
|
||||
dev_loc = pathlib.Path(dev_loc)
|
||||
|
||||
train = list(read_data((train_loc)))
|
||||
test = list(read_data(dev_loc))
|
||||
|
||||
tagger = BiTagger(vocab)
|
||||
|
||||
UNK = vw.w2i["_UNK_"]
|
||||
nwords = vw.size()
|
||||
ntags = vt.size()
|
||||
|
||||
model = dynet.Model()
|
||||
sgd = dynet.SimpleSGDTrainer(model)
|
||||
|
||||
E = model.add_lookup_parameters((nwords, 128))
|
||||
p_t1 = model.add_lookup_parameters((ntags, 30))
|
||||
|
||||
pH = model.add_parameters((32, 50*2))
|
||||
pO = model.add_parameters((ntags, 32))
|
||||
|
||||
builders=[
|
||||
dynet.LSTMBuilder(1, 128, 50, model),
|
||||
dynet.LSTMBuilder(1, 128, 50, model),
|
||||
]
|
||||
|
||||
tagged = loss = 0
|
||||
for ITER in xrange(50):
|
||||
random.shuffle(train)
|
||||
for i, s in enumerate(train,1):
|
||||
if i % 5000 == 0:
|
||||
sgd.status()
|
||||
print(loss / tagged)
|
||||
loss = 0
|
||||
tagged = 0
|
||||
if i % 10000 == 0:
|
||||
good = bad = 0.0
|
||||
for sent in test:
|
||||
word_ids = [vw.w2i.get(w, UNK) for w, t in sent]
|
||||
tags = tagger.tag_sent(word_ids)
|
||||
golds = [t for w, t in sent]
|
||||
for go, gu in zip(golds, tags):
|
||||
if go == gu:
|
||||
good += 1
|
||||
else:
|
||||
bad += 1
|
||||
print(good / (good+bad))
|
||||
ws = [vw.w2i.get(w, UNK) for w,p in s]
|
||||
ps = [vt.w2i[p] for w, p in s]
|
||||
model.update(ws, ps)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
plac.call(main)
|
Loading…
Reference in New Issue