diff --git a/spacy/language.py b/spacy/language.py index 6dee0f994..46c571815 100644 --- a/spacy/language.py +++ b/spacy/language.py @@ -1190,6 +1190,7 @@ class Language: get_examples: Optional[Callable[[], Iterable[Example]]] = None, *, sgd: Optional[Optimizer] = None, + link_components: bool = True, ) -> Optimizer: """Initialize the pipe for training, using data examples if available. @@ -1197,6 +1198,8 @@ class Language: returns gold-standard Example objects. sgd (Optional[Optimizer]): An optimizer to use for updates. If not provided, will be created using the .create_optimizer() method. + link_components (bool): Link listener components automatically or not + (default True) RETURNS (thinc.api.Optimizer): The optimizer. DOCS: https://spacy.io/api/language#initialize @@ -1244,7 +1247,8 @@ class Language: proc.initialize, p_settings, section="components", name=name ) proc.initialize(get_examples, nlp=self, **p_settings) - self._link_components() + if link_components: + self._link_components() self._optimizer = sgd if sgd is not None: self._optimizer = sgd @@ -1528,7 +1532,7 @@ class Language: """Register 'listeners' within pipeline components, to allow them to effectively share weights. """ - # I had though, "Why do we do this inside the Language object? Shouldn't + # I had thought, "Why do we do this inside the Language object? Shouldn't # it be the tok2vec/transformer/etc's job? # The problem is we need to do it during deserialization...And the # components don't receive the pipeline then. So this does have to be diff --git a/spacy/training/initialize.py b/spacy/training/initialize.py index 956e4ec37..76c5eaddc 100644 --- a/spacy/training/initialize.py +++ b/spacy/training/initialize.py @@ -64,8 +64,10 @@ def init_nlp(config: Config, *, use_gpu: int = -1) -> "Language": with nlp.select_pipes(enable=resume_components): logger.info(f"Resuming training for: {resume_components}") nlp.resume_training(sgd=optimizer) + # Make sure that listeners are defined before initializing further + nlp._link_components() with nlp.select_pipes(disable=[*frozen_components, *resume_components]): - nlp.initialize(lambda: train_corpus(nlp), sgd=optimizer) + nlp.initialize(lambda: train_corpus(nlp), sgd=optimizer, link_components=False) logger.info(f"Initialized pipeline components: {nlp.pipe_names}") # Detect components with listeners that are not frozen consistently for name, proc in nlp.pipeline: