New console logger with expanded progress tracking (#11972)

* Add `ConsoleLogger.v3`

This addition expands the progress bar feature to count up the training/distillation steps to either the next evaluation pass or the maximum number of steps.

* Rename progress bar types

* Add defaults to docs
Minor fixes

* Move comment

* Minor punctuation fixes

* Explicitly check for `None` when validating progress bar type

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
This commit is contained in:
Madeesh Kannan 2022-12-23 15:21:44 +01:00 committed by GitHub
parent 90896504a5
commit aa2b471a6e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 74 additions and 9 deletions

View File

@ -962,6 +962,7 @@ class Errors(metaclass=ErrorsWithCodes):
E1046 = ("{cls_name} is an abstract class and cannot be instantiated. If you are looking for spaCy's default " E1046 = ("{cls_name} is an abstract class and cannot be instantiated. If you are looking for spaCy's default "
"knowledge base, use `InMemoryLookupKB`.") "knowledge base, use `InMemoryLookupKB`.")
E1047 = ("`find_threshold()` only supports components with a `scorer` attribute.") E1047 = ("`find_threshold()` only supports components with a `scorer` attribute.")
E1048 = ("Got '{unexpected}' as console progress bar type, but expected one of the following: {expected}")
# Deprecated model shortcuts, only used in errors and warnings # Deprecated model shortcuts, only used in errors and warnings

View File

@ -26,6 +26,8 @@ def setup_table(
return final_cols, final_widths, ["r" for _ in final_widths] return final_cols, final_widths, ["r" for _ in final_widths]
# We cannot rename this method as it's directly imported
# and used by external packages such as spacy-loggers.
@registry.loggers("spacy.ConsoleLogger.v2") @registry.loggers("spacy.ConsoleLogger.v2")
def console_logger( def console_logger(
progress_bar: bool = False, progress_bar: bool = False,
@ -33,7 +35,27 @@ def console_logger(
output_file: Optional[Union[str, Path]] = None, output_file: Optional[Union[str, Path]] = None,
): ):
"""The ConsoleLogger.v2 prints out training logs in the console and/or saves them to a jsonl file. """The ConsoleLogger.v2 prints out training logs in the console and/or saves them to a jsonl file.
progress_bar (bool): Whether the logger should print the progress bar. progress_bar (bool): Whether the logger should print a progress bar tracking the steps till the next evaluation pass.
console_output (bool): Whether the logger should print the logs on the console.
output_file (Optional[Union[str, Path]]): The file to save the training logs to.
"""
return console_logger_v3(
progress_bar=None if progress_bar is False else "eval",
console_output=console_output,
output_file=output_file,
)
@registry.loggers("spacy.ConsoleLogger.v3")
def console_logger_v3(
progress_bar: Optional[str] = None,
console_output: bool = True,
output_file: Optional[Union[str, Path]] = None,
):
"""The ConsoleLogger.v3 prints out training logs in the console and/or saves them to a jsonl file.
progress_bar (Optional[str]): Type of progress bar to show in the console. Allowed values:
train - Tracks the number of steps from the beginning of training until the full training run is complete (training.max_steps is reached).
eval - Tracks the number of steps between the previous and next evaluation (training.eval_frequency is reached).
console_output (bool): Whether the logger should print the logs on the console. console_output (bool): Whether the logger should print the logs on the console.
output_file (Optional[Union[str, Path]]): The file to save the training logs to. output_file (Optional[Union[str, Path]]): The file to save the training logs to.
""" """
@ -70,6 +92,7 @@ def console_logger(
for name, proc in nlp.pipeline for name, proc in nlp.pipeline
if hasattr(proc, "is_trainable") and proc.is_trainable if hasattr(proc, "is_trainable") and proc.is_trainable
] ]
max_steps = nlp.config["training"]["max_steps"]
eval_frequency = nlp.config["training"]["eval_frequency"] eval_frequency = nlp.config["training"]["eval_frequency"]
score_weights = nlp.config["training"]["score_weights"] score_weights = nlp.config["training"]["score_weights"]
score_cols = [col for col, value in score_weights.items() if value is not None] score_cols = [col for col, value in score_weights.items() if value is not None]
@ -84,6 +107,13 @@ def console_logger(
write(msg.row(table_header, widths=table_widths, spacing=spacing)) write(msg.row(table_header, widths=table_widths, spacing=spacing))
write(msg.row(["-" * width for width in table_widths], spacing=spacing)) write(msg.row(["-" * width for width in table_widths], spacing=spacing))
progress = None progress = None
expected_progress_types = ("train", "eval")
if progress_bar is not None and progress_bar not in expected_progress_types:
raise ValueError(
Errors.E1048.format(
unexpected=progress_bar, expected=expected_progress_types
)
)
def log_step(info: Optional[Dict[str, Any]]) -> None: def log_step(info: Optional[Dict[str, Any]]) -> None:
nonlocal progress nonlocal progress
@ -141,11 +171,23 @@ def console_logger(
) )
) )
if progress_bar: if progress_bar:
if progress_bar == "train":
total = max_steps
desc = f"Last Eval Epoch: {info['epoch']}"
initial = info["step"]
else:
total = eval_frequency
desc = f"Epoch {info['epoch']+1}"
initial = 0
# Set disable=None, so that it disables on non-TTY # Set disable=None, so that it disables on non-TTY
progress = tqdm.tqdm( progress = tqdm.tqdm(
total=eval_frequency, disable=None, leave=False, file=stderr total=total,
disable=None,
leave=False,
file=stderr,
initial=initial,
) )
progress.set_description(f"Epoch {info['epoch']+1}") progress.set_description(desc)
def finalize() -> None: def finalize() -> None:
if output_stream: if output_stream:

View File

@ -513,7 +513,7 @@ a [Weights & Biases](https://www.wandb.com/) dashboard.
Instead of using one of the built-in loggers, you can Instead of using one of the built-in loggers, you can
[implement your own](/usage/training#custom-logging). [implement your own](/usage/training#custom-logging).
#### spacy.ConsoleLogger.v2 {#ConsoleLogger tag="registered function"} #### spacy.ConsoleLogger.v2 {tag="registered function"}
> #### Example config > #### Example config
> >
@ -565,10 +565,32 @@ start decreasing across epochs.
</Accordion> </Accordion>
| Name | Description | | Name | Description |
| ---------------- | --------------------------------------------------------------------- | | ---------------- | ---------------------------------------------------------------------------------------------------------------------------- |
| `progress_bar` | Whether the logger should print the progress bar ~~bool~~ | | `progress_bar` | Whether the logger should print a progress bar tracking the steps till the next evaluation pass (default: `False`). ~~bool~~ |
| `console_output` | Whether the logger should print the logs on the console. ~~bool~~ | | `console_output` | Whether the logger should print the logs in the console (default: `True`). ~~bool~~ |
| `output_file` | The file to save the training logs to. ~~Optional[Union[str, Path]]~~ | | `output_file` | The file to save the training logs to (default: `None`). ~~Optional[Union[str, Path]]~~ |
#### spacy.ConsoleLogger.v3 {#ConsoleLogger tag="registered function"}
> #### Example config
>
> ```ini
> [training.logger]
> @loggers = "spacy.ConsoleLogger.v3"
> progress_bar = "all_steps"
> console_output = true
> output_file = "training_log.jsonl"
> ```
Writes the results of a training step to the console in a tabular format and
optionally saves them to a `jsonl` file.
| Name | Description |
| ---------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `progress_bar` | Type of progress bar to show in the console: `"train"`, `"eval"` or `None`. |
| | The bar tracks the number of steps until `training.max_steps` and `training.eval_frequency` are reached respectively (default: `None`). ~~Optional[str]~~ |
| `console_output` | Whether the logger should print the logs in the console (default: `True`). ~~bool~~ |
| `output_file` | The file to save the training logs to (default: `None`). ~~Optional[Union[str, Path]]~~ |
## Readers {#readers} ## Readers {#readers}