mirror of https://github.com/explosion/spaCy.git
Support optional maxout layer
This commit is contained in:
parent
c55b8fa7c5
commit
a8b6d11c5b
|
@ -87,7 +87,7 @@ cdef class precompute_hiddens:
|
||||||
we can do all our hard maths up front, packed into large multiplications,
|
we can do all our hard maths up front, packed into large multiplications,
|
||||||
and do the hard-to-program parsing on the CPU.
|
and do the hard-to-program parsing on the CPU.
|
||||||
'''
|
'''
|
||||||
cdef int nF, nO
|
cdef int nF, nO, nP
|
||||||
cdef bint _is_synchronized
|
cdef bint _is_synchronized
|
||||||
cdef public object ops
|
cdef public object ops
|
||||||
cdef np.ndarray _features
|
cdef np.ndarray _features
|
||||||
|
@ -107,8 +107,9 @@ cdef class precompute_hiddens:
|
||||||
cached = gpu_cached
|
cached = gpu_cached
|
||||||
self.nF = cached.shape[1]
|
self.nF = cached.shape[1]
|
||||||
self.nO = cached.shape[2]
|
self.nO = cached.shape[2]
|
||||||
|
self.nP = getattr(lower_model, 'nP', 1)
|
||||||
self.ops = lower_model.ops
|
self.ops = lower_model.ops
|
||||||
self._features = numpy.zeros((batch_size, self.nO), dtype='f')
|
self._features = numpy.zeros((batch_size, self.nO*self.nP), dtype='f')
|
||||||
self._is_synchronized = False
|
self._is_synchronized = False
|
||||||
self._cuda_stream = cuda_stream
|
self._cuda_stream = cuda_stream
|
||||||
self._cached = cached
|
self._cached = cached
|
||||||
|
@ -138,9 +139,12 @@ cdef class precompute_hiddens:
|
||||||
cdef int[:, ::1] ids = token_ids
|
cdef int[:, ::1] ids = token_ids
|
||||||
sum_state_features(<float*>state_vector.data,
|
sum_state_features(<float*>state_vector.data,
|
||||||
feat_weights, &ids[0,0],
|
feat_weights, &ids[0,0],
|
||||||
token_ids.shape[0], self.nF, self.nO)
|
token_ids.shape[0], self.nF, self.nO*self.nP)
|
||||||
|
state_vector, bp_nonlinearity = self._nonlinearity(state_vector)
|
||||||
|
|
||||||
def backward(d_state_vector, sgd=None):
|
def backward(d_state_vector, sgd=None):
|
||||||
|
if bp_nonlinearity is not None:
|
||||||
|
d_state_vector = bp_nonlinearity(d_state_vector, sgd)
|
||||||
# This will usually be on GPU
|
# This will usually be on GPU
|
||||||
if isinstance(d_state_vector, numpy.ndarray):
|
if isinstance(d_state_vector, numpy.ndarray):
|
||||||
d_state_vector = self.ops.xp.array(d_state_vector)
|
d_state_vector = self.ops.xp.array(d_state_vector)
|
||||||
|
@ -148,6 +152,15 @@ cdef class precompute_hiddens:
|
||||||
return d_tokens
|
return d_tokens
|
||||||
return state_vector, backward
|
return state_vector, backward
|
||||||
|
|
||||||
|
def _nonlinearity(self, state_vector):
|
||||||
|
if self.nP == 1:
|
||||||
|
return state_vector, None
|
||||||
|
best, which = self.ops.maxout(state_vector, self.nP)
|
||||||
|
def backprop(d_best, sgd=None):
|
||||||
|
return self.ops.backprop_maxout(d_best, which, self.nP)
|
||||||
|
return best, backprop
|
||||||
|
|
||||||
|
|
||||||
cdef void sum_state_features(float* output,
|
cdef void sum_state_features(float* output,
|
||||||
const float* cached, const int* token_ids, int B, int F, int O) nogil:
|
const float* cached, const int* token_ids, int B, int F, int O) nogil:
|
||||||
cdef int idx, b, f, i
|
cdef int idx, b, f, i
|
||||||
|
@ -220,9 +233,16 @@ cdef class Parser:
|
||||||
depth = util.env_opt('parser_hidden_depth', depth)
|
depth = util.env_opt('parser_hidden_depth', depth)
|
||||||
token_vector_width = util.env_opt('token_vector_width', token_vector_width)
|
token_vector_width = util.env_opt('token_vector_width', token_vector_width)
|
||||||
hidden_width = util.env_opt('hidden_width', hidden_width)
|
hidden_width = util.env_opt('hidden_width', hidden_width)
|
||||||
|
parser_maxout_pieces = util.env_opt('parser_maxout_pieces', 2)
|
||||||
|
if parser_maxout_pieces == 1:
|
||||||
lower = PrecomputableAffine(hidden_width if depth >= 1 else nr_class,
|
lower = PrecomputableAffine(hidden_width if depth >= 1 else nr_class,
|
||||||
nF=cls.nr_feature,
|
nF=cls.nr_feature,
|
||||||
nI=token_vector_width)
|
nI=token_vector_width)
|
||||||
|
else:
|
||||||
|
lower = PrecomputableMaxouts(hidden_width if depth >= 1 else nr_class,
|
||||||
|
nF=cls.nr_feature,
|
||||||
|
nP=parser_maxout_pieces,
|
||||||
|
nI=token_vector_width)
|
||||||
|
|
||||||
with Model.use_device('cpu'):
|
with Model.use_device('cpu'):
|
||||||
if depth == 0:
|
if depth == 0:
|
||||||
|
|
Loading…
Reference in New Issue