mirror of https://github.com/explosion/spaCy.git
Remove redundant PrecomputableMaxouts class
This commit is contained in:
parent
a17a1b60c7
commit
a8850b4282
|
@ -47,7 +47,7 @@ from thinc.neural.util import get_array_module
|
|||
|
||||
from .. import util
|
||||
from ..util import get_async, get_cuda_stream
|
||||
from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts
|
||||
from .._ml import zero_init, PrecomputableAffine
|
||||
from .._ml import Tok2Vec, doc2feats, rebatch, fine_tune
|
||||
from .._ml import Residual, drop_layer, flatten
|
||||
from .._ml import link_vectors_to_models
|
||||
|
@ -153,7 +153,6 @@ cdef class precompute_hiddens:
|
|||
state_vector, bp_nonlinearity = self._nonlinearity(state_vector)
|
||||
|
||||
def backward(d_state_vector, sgd=None):
|
||||
if bp_nonlinearity is not None:
|
||||
d_state_vector = bp_nonlinearity(d_state_vector, sgd)
|
||||
# This will usually be on GPU
|
||||
if not isinstance(d_state_vector, self.ops.xp.ndarray):
|
||||
|
@ -165,14 +164,18 @@ cdef class precompute_hiddens:
|
|||
def _nonlinearity(self, state_vector):
|
||||
if self.nP == 1:
|
||||
mask = state_vector >= 0.
|
||||
return state_vector * mask, lambda dY, sgd=None: dY * mask
|
||||
state_vector *= mask
|
||||
else:
|
||||
state_vector = state_vector.reshape(
|
||||
(state_vector.shape[0], state_vector.shape[1]//self.nP, self.nP))
|
||||
best, which = self.ops.maxout(state_vector)
|
||||
(state_vector.shape[0], self.nO, self.nP))
|
||||
state_vector, mask = self.ops.maxout(state_vector)
|
||||
|
||||
def backprop_maxout(d_best, sgd=None):
|
||||
return self.ops.backprop_maxout(d_best, which, self.nP)
|
||||
return best, backprop_maxout
|
||||
def backprop_nonlinearity(d_best, sgd=None):
|
||||
if self.nP == 1:
|
||||
return d_best * mask
|
||||
else:
|
||||
return self.ops.backprop_maxout(d_best, mask, self.nP)
|
||||
return state_vector, backprop_nonlinearity
|
||||
|
||||
|
||||
cdef void sum_state_features(float* output,
|
||||
|
@ -262,12 +265,7 @@ cdef class Parser:
|
|||
tok2vec = Tok2Vec(token_vector_width, embed_size,
|
||||
pretrained_dims=cfg.get('pretrained_dims', 0))
|
||||
tok2vec = chain(tok2vec, flatten)
|
||||
if parser_maxout_pieces >= 2:
|
||||
lower = PrecomputableMaxouts(hidden_width if depth >= 1 else nr_class,
|
||||
nF=cls.nr_feature, nP=parser_maxout_pieces,
|
||||
nI=token_vector_width)
|
||||
else:
|
||||
lower = PrecomputableAffine(hidden_width if depth >= 1 else nr_class,
|
||||
lower = PrecomputableAffine(hidden_width * parser_maxout_pieces,
|
||||
nF=cls.nr_feature, nI=token_vector_width)
|
||||
|
||||
with Model.use_device('cpu'):
|
||||
|
|
Loading…
Reference in New Issue