Tidy up and remove raw text (rehearsal) for now

This commit is contained in:
Ines Montani 2020-09-28 12:30:13 +02:00
parent 1590de11b1
commit a5f2cc0509
3 changed files with 31 additions and 51 deletions

View File

@ -42,20 +42,6 @@ def init_pipeline_cli(
msg.good(f"Saved initialized pipeline to {output_path}")
def must_initialize(init_path: Path, config_path: Path, overrides: Dict) -> bool:
config = util.load_config(config_path, overrides=overrides)
if not init_path.exists():
return True
elif not (init_path / "config.cfg").exists():
return True
else:
init_cfg = util.load_config(init_path / "config.cfg", interpolate=True)
if config.to_str() != init_cfg.to_str():
return True
else:
return False
def init_pipeline(config: Config, use_gpu: int = -1) -> Language:
raw_config = config
config = raw_config.interpolate()

View File

@ -10,13 +10,12 @@ import random
import typer
import logging
from .init_pipeline import init_pipeline, must_initialize
from .init_pipeline import init_pipeline
from .init_pipeline import create_before_to_disk_callback
from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
from ._util import import_code
from ..language import Language
from .. import util
from ..training.example import Example
from ..errors import Errors
from ..util import resolve_dot_names, registry
from ..schemas import ConfigSchemaTraining
@ -69,24 +68,39 @@ def train_cli(
def init_nlp(
config: Config, output_path: Optional[Path], init_path: Optional[Path]
) -> None:
if init_path is not None:
nlp = util.load_model(init_path)
# TODO: how to handle provided pipeline that needs to be reinitialized?
if must_reinitialize(config, nlp.config):
msg.fail(
f"Config has changed: can't use initialized pipeline from "
f"{init_path}. Please re-run 'spacy init nlp'.",
exits=1,
)
msg.good(f"Loaded initialized pipeline from {init_path}")
return nlp
if output_path is not None:
output_init_path = output_path / "model-initial"
if must_initialize(config, output_init_path):
msg.warn("TODO:")
if not output_init_path.exists():
msg.info(f"Initializing the pipeline in {output_init_path}")
nlp = init_pipeline(config)
nlp.to_disk(init_path)
nlp.to_disk(output_init_path)
msg.good(f"Saved initialized pipeline to {output_init_path}")
else:
nlp = util.load_model(output_init_path)
msg.good(f"Loaded initialized pipeline from {output_init_path}")
if must_reinitialize(config, nlp.config):
msg.warn("Config has changed: need to re-initialize pipeline")
nlp = init_pipeline(config)
nlp.to_disk(output_init_path)
msg.good(f"Re-initialized pipeline in {output_init_path}")
else:
msg.good(f"Loaded initialized pipeline from {output_init_path}")
return nlp
msg.warn("TODO:")
msg.warn(
"Not saving initialized model: no output directory specified. "
"To speed up training, spaCy can save the initialized nlp object with "
"the vocabulary, vectors and label scheme. To take advantage of this, "
"provide an output directory or use the 'spacy init nlp' command."
)
return init_pipeline(config)
@ -101,8 +115,8 @@ def train(
if use_gpu >= 0 and allocator:
set_gpu_allocator(allocator)
T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
dot_names = [T["train_corpus"], T["dev_corpus"], T["raw_text"]]
train_corpus, dev_corpus, raw_text = resolve_dot_names(config, dot_names)
dot_names = [T["train_corpus"], T["dev_corpus"]]
train_corpus, dev_corpus = resolve_dot_names(config, dot_names)
optimizer = T["optimizer"]
score_weights = T["score_weights"]
batcher = T["batcher"]
@ -121,7 +135,6 @@ def train(
patience=T["patience"],
max_steps=T["max_steps"],
eval_frequency=T["eval_frequency"],
raw_text=raw_text,
exclude=frozen_components,
)
msg.info(f"Pipeline: {nlp.pipe_names}")
@ -171,6 +184,11 @@ def train(
msg.good(f"Saved pipeline to output directory {final_model_path}")
def must_reinitialize(train_config: Config, init_config: Config) -> bool:
# TODO: do this better and more fine-grained
return train_config.interpolate().to_str() == init_config.interpolate().to_str()
def add_vectors(nlp: Language, vectors: str) -> None:
title = f"Config validation error for vectors {vectors}"
desc = (
@ -235,7 +253,6 @@ def train_while_improving(
accumulate_gradient: int,
patience: int,
max_steps: int,
raw_text: List[Dict[str, str]],
exclude: List[str],
):
"""Train until an evaluation stops improving. Works as a generator,
@ -282,27 +299,14 @@ def train_while_improving(
dropouts = dropout
results = []
losses = {}
if raw_text:
random.shuffle(raw_text)
raw_examples = [
Example.from_dict(nlp.make_doc(rt["text"]), {}) for rt in raw_text
]
raw_batches = util.minibatch(raw_examples, size=8)
words_seen = 0
start_time = timer()
for step, (epoch, batch) in enumerate(train_data):
dropout = next(dropouts)
for subbatch in subdivide_batch(batch, accumulate_gradient):
nlp.update(
subbatch, drop=dropout, losses=losses, sgd=False, exclude=exclude
)
if raw_text:
# If raw text is available, perform 'rehearsal' updates,
# which use unlabelled data to reduce overfitting.
raw_batch = list(next(raw_batches))
nlp.rehearse(raw_batch, sgd=optimizer, losses=losses, exclude=exclude)
# TODO: refactor this so we don't have to run it separately in here
for name, proc in nlp.pipeline:
if (
@ -386,15 +390,6 @@ def verify_cli_args(config_path: Path, output_path: Optional[Path] = None) -> No
def load_from_paths(
config: Config,
) -> Tuple[List[Dict[str, str]], Dict[str, dict], bytes]:
import srsly
# TODO: separate checks from loading
raw_text = util.ensure_path(config["training"]["raw_text"])
if raw_text is not None:
if not raw_text.exists():
msg.fail("Can't find raw text", raw_text, exits=1)
raw_text = list(srsly.read_jsonl(config["training"]["raw_text"]))
tag_map = {}
morph_rules = {}
weights_data = None
init_tok2vec = util.ensure_path(config["training"]["init_tok2vec"])
if init_tok2vec is not None:
@ -402,4 +397,4 @@ def load_from_paths(
msg.fail("Can't find pretrained tok2vec", init_tok2vec, exits=1)
with init_tok2vec.open("rb") as file_:
weights_data = file_.read()
return raw_text, tag_map, morph_rules, weights_data
return None, {}, {}, weights_data

View File

@ -1,7 +1,6 @@
[paths]
train = ""
dev = ""
raw_text = null
init_tok2vec = null
vocab_data = null