mirror of https://github.com/explosion/spaCy.git
Update annotation docs
This commit is contained in:
parent
786af87ffb
commit
a38393e2f6
|
@ -14,11 +14,12 @@ p
|
||||||
| (#[code ' ']) is included as a token.
|
| (#[code ' ']) is included as a token.
|
||||||
|
|
||||||
+aside-code("Example").
|
+aside-code("Example").
|
||||||
from spacy.en import English
|
from spacy.lang.en import English
|
||||||
nlp = English(parser=False)
|
nlp = English()
|
||||||
tokens = nlp('Some\nspaces and\ttab characters')
|
tokens = nlp('Some\nspaces and\ttab characters')
|
||||||
print([t.orth_ for t in tokens])
|
tokens_text = [t.text for t in tokens]
|
||||||
# ['Some', '\n', 'spaces', ' ', 'and', '\t', 'tab', 'characters']
|
assert tokens_text == ['Some', '\n', 'spaces', ' ', 'and',
|
||||||
|
'\t', 'tab', 'characters']
|
||||||
|
|
||||||
p
|
p
|
||||||
| The whitespace tokens are useful for much the same reason punctuation is
|
| The whitespace tokens are useful for much the same reason punctuation is
|
||||||
|
@ -38,6 +39,11 @@ p
|
||||||
|
|
||||||
+h(2, "pos-tagging") Part-of-speech Tagging
|
+h(2, "pos-tagging") Part-of-speech Tagging
|
||||||
|
|
||||||
|
+aside("Tip: Understanding tags")
|
||||||
|
| You can also use #[code spacy.explain()] to get the escription for the
|
||||||
|
| string representation of a tag. For example,
|
||||||
|
| #[code spacy.explain("RB")] will return "adverb".
|
||||||
|
|
||||||
include _annotation/_pos-tags
|
include _annotation/_pos-tags
|
||||||
|
|
||||||
+h(2, "lemmatization") Lemmatization
|
+h(2, "lemmatization") Lemmatization
|
||||||
|
@ -50,25 +56,35 @@ p A "lemma" is the uninflected form of a word. In English, this means:
|
||||||
+item #[strong Nouns]: The form like "dog", not "dogs"; like "child", not "children"
|
+item #[strong Nouns]: The form like "dog", not "dogs"; like "child", not "children"
|
||||||
+item #[strong Verbs]: The form like "write", not "writes", "writing", "wrote" or "written"
|
+item #[strong Verbs]: The form like "write", not "writes", "writing", "wrote" or "written"
|
||||||
|
|
||||||
+aside("About spaCy's custom pronoun lemma")
|
|
||||||
| Unlike verbs and common nouns, there's no clear base form of a personal
|
|
||||||
| pronoun. Should the lemma of "me" be "I", or should we normalize person
|
|
||||||
| as well, giving "it" — or maybe "he"? spaCy's solution is to introduce a
|
|
||||||
| novel symbol, #[code.u-nowrap -PRON-], which is used as the lemma for
|
|
||||||
| all personal pronouns.
|
|
||||||
|
|
||||||
p
|
p
|
||||||
| The lemmatization data is taken from
|
| The lemmatization data is taken from
|
||||||
| #[+a("https://wordnet.princeton.edu") WordNet]. However, we also add a
|
| #[+a("https://wordnet.princeton.edu") WordNet]. However, we also add a
|
||||||
| special case for pronouns: all pronouns are lemmatized to the special
|
| special case for pronouns: all pronouns are lemmatized to the special
|
||||||
| token #[code -PRON-].
|
| token #[code -PRON-].
|
||||||
|
|
||||||
|
+infobox("About spaCy's custom pronoun lemma")
|
||||||
|
| Unlike verbs and common nouns, there's no clear base form of a personal
|
||||||
|
| pronoun. Should the lemma of "me" be "I", or should we normalize person
|
||||||
|
| as well, giving "it" — or maybe "he"? spaCy's solution is to introduce a
|
||||||
|
| novel symbol, #[code -PRON-], which is used as the lemma for
|
||||||
|
| all personal pronouns.
|
||||||
|
|
||||||
+h(2, "dependency-parsing") Syntactic Dependency Parsing
|
+h(2, "dependency-parsing") Syntactic Dependency Parsing
|
||||||
|
|
||||||
|
+aside("Tip: Understanding labels")
|
||||||
|
| You can also use #[code spacy.explain()] to get the description for the
|
||||||
|
| string representation of a label. For example,
|
||||||
|
| #[code spacy.explain("prt")] will return "particle".
|
||||||
|
|
||||||
include _annotation/_dep-labels
|
include _annotation/_dep-labels
|
||||||
|
|
||||||
+h(2, "named-entities") Named Entity Recognition
|
+h(2, "named-entities") Named Entity Recognition
|
||||||
|
|
||||||
|
+aside("Tip: Understanding entity types")
|
||||||
|
| You can also use #[code spacy.explain()] to get the description for the
|
||||||
|
| string representation of an entity label. For example,
|
||||||
|
| #[code spacy.explain("LANGUAGE")] will return "any named language".
|
||||||
|
|
||||||
include _annotation/_named-entities
|
include _annotation/_named-entities
|
||||||
|
|
||||||
+h(3, "biluo") BILUO Scheme
|
+h(3, "biluo") BILUO Scheme
|
||||||
|
|
Loading…
Reference in New Issue