mirror of https://github.com/explosion/spaCy.git
Add text-classification hook to pipeline
This commit is contained in:
parent
7ea50182a5
commit
a231b56d40
|
@ -42,10 +42,89 @@ from .compat import json_dumps
|
|||
|
||||
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP, POS
|
||||
from ._ml import rebatch, Tok2Vec, flatten, get_col, doc2feats
|
||||
from ._ml import build_text_classifier
|
||||
from .parts_of_speech import X
|
||||
|
||||
|
||||
class TokenVectorEncoder(object):
|
||||
class BaseThincComponent(object):
|
||||
name = None
|
||||
|
||||
@classmethod
|
||||
def Model(cls, *shape, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def __init__(self, vocab, model=True, **cfg):
|
||||
raise NotImplementedError
|
||||
|
||||
def __call__(self, doc):
|
||||
scores = self.predict([doc])
|
||||
self.set_annotations([doc], scores)
|
||||
return doc
|
||||
|
||||
def pipe(self, stream, batch_size=128, n_threads=-1):
|
||||
for docs in cytoolz.partition_all(batch_size, stream):
|
||||
docs = list(docs)
|
||||
scores = self.predict(docs)
|
||||
self.set_annotations(docs, scores)
|
||||
yield from docs
|
||||
|
||||
def predict(self, docs):
|
||||
raise NotImplementedError
|
||||
|
||||
def set_annotations(self, docs, scores):
|
||||
raise NotImplementedError
|
||||
|
||||
def update(self, docs_tensors, golds, state=None, drop=0., sgd=None, losses=None):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
raise NotImplementedError
|
||||
|
||||
def begin_training(self, gold_tuples, pipeline=None):
|
||||
token_vector_width = pipeline[0].model.nO
|
||||
if self.model is True:
|
||||
self.model = self.Model(1, token_vector_width)
|
||||
|
||||
def use_params(self, params):
|
||||
with self.model.use_params(params):
|
||||
yield
|
||||
|
||||
def to_bytes(self, **exclude):
|
||||
serialize = OrderedDict((
|
||||
('model', lambda: self.model.to_bytes()),
|
||||
('vocab', lambda: self.vocab.to_bytes())
|
||||
))
|
||||
return util.to_bytes(serialize, exclude)
|
||||
|
||||
def from_bytes(self, bytes_data, **exclude):
|
||||
if self.model is True:
|
||||
self.model = self.Model()
|
||||
deserialize = OrderedDict((
|
||||
('model', lambda b: self.model.from_bytes(b)),
|
||||
('vocab', lambda b: self.vocab.from_bytes(b))
|
||||
))
|
||||
util.from_bytes(bytes_data, deserialize, exclude)
|
||||
return self
|
||||
|
||||
def to_disk(self, path, **exclude):
|
||||
serialize = OrderedDict((
|
||||
('model', lambda p: p.open('wb').write(self.model.to_bytes())),
|
||||
('vocab', lambda p: self.vocab.to_disk(p))
|
||||
))
|
||||
util.to_disk(path, serialize, exclude)
|
||||
|
||||
def from_disk(self, path, **exclude):
|
||||
if self.model is True:
|
||||
self.model = self.Model()
|
||||
deserialize = OrderedDict((
|
||||
('model', lambda p: self.model.from_bytes(p.open('rb').read())),
|
||||
('vocab', lambda p: self.vocab.from_disk(p))
|
||||
))
|
||||
util.from_disk(path, deserialize, exclude)
|
||||
return self
|
||||
|
||||
|
||||
class TokenVectorEncoder(BaseThincComponent):
|
||||
"""Assign position-sensitive vectors to tokens, using a CNN or RNN."""
|
||||
name = 'tensorizer'
|
||||
|
||||
|
@ -155,51 +234,8 @@ class TokenVectorEncoder(object):
|
|||
if self.model is True:
|
||||
self.model = self.Model()
|
||||
|
||||
def use_params(self, params):
|
||||
"""Replace weights of models in the pipeline with those provided in the
|
||||
params dictionary.
|
||||
|
||||
params (dict): A dictionary of parameters keyed by model ID.
|
||||
"""
|
||||
with self.model.use_params(params):
|
||||
yield
|
||||
|
||||
def to_bytes(self, **exclude):
|
||||
serialize = OrderedDict((
|
||||
('model', lambda: self.model.to_bytes()),
|
||||
('vocab', lambda: self.vocab.to_bytes())
|
||||
))
|
||||
return util.to_bytes(serialize, exclude)
|
||||
|
||||
def from_bytes(self, bytes_data, **exclude):
|
||||
if self.model is True:
|
||||
self.model = self.Model()
|
||||
deserialize = OrderedDict((
|
||||
('model', lambda b: self.model.from_bytes(b)),
|
||||
('vocab', lambda b: self.vocab.from_bytes(b))
|
||||
))
|
||||
util.from_bytes(bytes_data, deserialize, exclude)
|
||||
return self
|
||||
|
||||
def to_disk(self, path, **exclude):
|
||||
serialize = OrderedDict((
|
||||
('model', lambda p: p.open('wb').write(self.model.to_bytes())),
|
||||
('vocab', lambda p: self.vocab.to_disk(p))
|
||||
))
|
||||
util.to_disk(path, serialize, exclude)
|
||||
|
||||
def from_disk(self, path, **exclude):
|
||||
if self.model is True:
|
||||
self.model = self.Model()
|
||||
deserialize = OrderedDict((
|
||||
('model', lambda p: self.model.from_bytes(p.open('rb').read())),
|
||||
('vocab', lambda p: self.vocab.from_disk(p))
|
||||
))
|
||||
util.from_disk(path, deserialize, exclude)
|
||||
return self
|
||||
|
||||
|
||||
class NeuralTagger(object):
|
||||
class NeuralTagger(BaseThincComponent):
|
||||
name = 'tagger'
|
||||
def __init__(self, vocab, model=True):
|
||||
self.vocab = vocab
|
||||
|
@ -252,7 +288,6 @@ class NeuralTagger(object):
|
|||
loss, d_tag_scores = self.get_loss(docs, golds, tag_scores)
|
||||
|
||||
d_tokvecs = bp_tag_scores(d_tag_scores, sgd=sgd)
|
||||
|
||||
return d_tokvecs
|
||||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
|
@ -423,7 +458,7 @@ class NeuralLabeller(NeuralTagger):
|
|||
return float(loss), d_scores
|
||||
|
||||
|
||||
class SimilarityHook(object):
|
||||
class SimilarityHook(BaseThincComponent):
|
||||
"""
|
||||
Experimental
|
||||
|
||||
|
@ -477,48 +512,65 @@ class SimilarityHook(object):
|
|||
if self.model is True:
|
||||
self.model = self.Model(pipeline[0].model.nO)
|
||||
|
||||
def use_params(self, params):
|
||||
"""Replace weights of models in the pipeline with those provided in the
|
||||
params dictionary.
|
||||
|
||||
params (dict): A dictionary of parameters keyed by model ID.
|
||||
"""
|
||||
with self.model.use_params(params):
|
||||
yield
|
||||
class TextClassifier(BaseThincComponent):
|
||||
name = 'text-classifier'
|
||||
|
||||
def to_bytes(self, **exclude):
|
||||
serialize = OrderedDict((
|
||||
('model', lambda: self.model.to_bytes()),
|
||||
('vocab', lambda: self.vocab.to_bytes())
|
||||
))
|
||||
return util.to_bytes(serialize, exclude)
|
||||
@classmethod
|
||||
def Model(cls, nr_class, width=64, **cfg):
|
||||
return build_text_classifier(nr_class, width, **cfg)
|
||||
|
||||
def from_bytes(self, bytes_data, **exclude):
|
||||
def __init__(self, vocab, model=True, **cfg):
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
self.labels = cfg.get('labels', ['LABEL'])
|
||||
|
||||
def __call__(self, doc):
|
||||
scores = self.predict([doc])
|
||||
self.set_annotations([doc], scores)
|
||||
return doc
|
||||
|
||||
def pipe(self, stream, batch_size=128, n_threads=-1):
|
||||
for docs in cytoolz.partition_all(batch_size, stream):
|
||||
docs = list(docs)
|
||||
scores = self.predict(docs)
|
||||
self.set_annotations(docs, scores)
|
||||
yield from docs
|
||||
|
||||
def predict(self, docs):
|
||||
scores = self.model(docs)
|
||||
scores = self.model.ops.asarray(scores)
|
||||
return scores
|
||||
|
||||
def set_annotations(self, docs, scores):
|
||||
for i, doc in enumerate(docs):
|
||||
for j, label in self.labels:
|
||||
doc.cats[label] = float(scores[i, j])
|
||||
|
||||
def update(self, docs_tensors, golds, state=None, drop=0., sgd=None, losses=None):
|
||||
docs, tensors = docs_tensors
|
||||
scores, bp_scores = self.model.begin_update(docs, drop=drop)
|
||||
loss, d_scores = self.get_loss(docs, golds, scores)
|
||||
d_tensors = bp_scores(d_scores, sgd=sgd)
|
||||
if losses is not None:
|
||||
losses.setdefault(self.name, 0.0)
|
||||
losses[self.name] += loss
|
||||
return d_tensors
|
||||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
truths = numpy.zeros((len(golds), len(self.labels)), dtype='f')
|
||||
for i, gold in enumerate(golds):
|
||||
for j, label in enumerate(self.labels):
|
||||
truths[i, j] = label in gold.cats
|
||||
truths = self.model.ops.asarray(truths)
|
||||
d_scores = (scores-truths) / scores.shape[0]
|
||||
mean_square_error = ((scores-truths)**2).sum(axis=1).mean()
|
||||
return mean_square_error, d_scores
|
||||
|
||||
def begin_training(self, gold_tuples, pipeline=None):
|
||||
token_vector_width = pipeline[0].model.nO
|
||||
if self.model is True:
|
||||
self.model = self.Model()
|
||||
deserialize = OrderedDict((
|
||||
('model', lambda b: self.model.from_bytes(b)),
|
||||
('vocab', lambda b: self.vocab.from_bytes(b))
|
||||
))
|
||||
util.from_bytes(bytes_data, deserialize, exclude)
|
||||
return self
|
||||
|
||||
def to_disk(self, path, **exclude):
|
||||
serialize = OrderedDict((
|
||||
('model', lambda p: p.open('wb').write(self.model.to_bytes())),
|
||||
('vocab', lambda p: self.vocab.to_disk(p))
|
||||
))
|
||||
util.to_disk(path, serialize, exclude)
|
||||
|
||||
def from_disk(self, path, **exclude):
|
||||
if self.model is True:
|
||||
self.model = self.Model()
|
||||
deserialize = OrderedDict((
|
||||
('model', lambda p: self.model.from_bytes(p.open('rb').read())),
|
||||
('vocab', lambda p: self.vocab.from_disk(p))
|
||||
))
|
||||
util.from_disk(path, deserialize, exclude)
|
||||
return self
|
||||
self.model = self.Model(len(self.labels), token_vector_width)
|
||||
|
||||
|
||||
cdef class EntityRecognizer(LinearParser):
|
||||
|
@ -569,6 +621,14 @@ cdef class NeuralEntityRecognizer(NeuralParser):
|
|||
|
||||
nr_feature = 6
|
||||
|
||||
def predict_confidences(self, docs):
|
||||
tensors = [d.tensor for d in docs]
|
||||
samples = []
|
||||
for i in range(10):
|
||||
states = self.parse_batch(docs, tensors, drop=0.3)
|
||||
for state in states:
|
||||
samples.append(self._get_entities(state))
|
||||
|
||||
def __reduce__(self):
|
||||
return (NeuralEntityRecognizer, (self.vocab, self.moves, self.model), None, None)
|
||||
|
||||
|
|
Loading…
Reference in New Issue