From 9dfca0f2f8fb53314dfe874fd327b07239669438 Mon Sep 17 00:00:00 2001 From: ines Date: Fri, 27 Oct 2017 03:55:11 +0200 Subject: [PATCH] Add example for custom intent parser --- examples/training/train_intent_parser.py | 157 +++++++++++++++++++++++ 1 file changed, 157 insertions(+) create mode 100644 examples/training/train_intent_parser.py diff --git a/examples/training/train_intent_parser.py b/examples/training/train_intent_parser.py new file mode 100644 index 000000000..e67f26aff --- /dev/null +++ b/examples/training/train_intent_parser.py @@ -0,0 +1,157 @@ +#!/usr/bin/env python +# coding: utf-8 +"""Using the parser to recognise your own semantics spaCy's parser component +can be used to trained to predict any type of tree structure over your input +text. You can also predict trees over whole documents or chat logs, with +connections between the sentence-roots used to annotate discourse structure. + +In this example, we'll build a message parser for a common "chat intent": +finding local businesses. Our message semantics will have the following types +of relations: INTENT, PLACE, QUALITY, ATTRIBUTE, TIME, LOCATION. For example: + +"show me the best hotel in berlin" +('show', 'ROOT', 'show') +('best', 'QUALITY', 'hotel') --> hotel with QUALITY best +('hotel', 'PLACE', 'show') --> show PLACE hotel +('berlin', 'LOCATION', 'hotel') --> hotel with LOCATION berlin +""" +from __future__ import unicode_literals, print_function + +import plac +import random +import spacy +from spacy.gold import GoldParse +from spacy.tokens import Doc +from pathlib import Path + + +# training data: words, head and dependency labels +# for no relation, we simply chose an arbitrary dependency label, e.g. '-' +TRAIN_DATA = [ + ( + ['find', 'a', 'cafe', 'with', 'great', 'wifi'], + [0, 2, 0, 5, 5, 2], # index of token head + ['ROOT', '-', 'PLACE', '-', 'QUALITY', 'ATTRIBUTE'] + ), + ( + ['find', 'a', 'hotel', 'near', 'the', 'beach'], + [0, 2, 0, 5, 5, 2], + ['ROOT', '-', 'PLACE', 'QUALITY', '-', 'ATTRIBUTE'] + ), + ( + ['find', 'me', 'the', 'closest', 'gym', 'that', "'s", 'open', 'late'], + [0, 0, 4, 4, 0, 6, 4, 6, 6], + ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', '-', 'ATTRIBUTE', 'TIME'] + ), + ( + ['show', 'me', 'the', 'cheapest', 'store', 'that', 'sells', 'flowers'], + [0, 0, 4, 4, 0, 4, 4, 4], # attach "flowers" to store! + ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', '-', 'PRODUCT'] + ), + ( + ['find', 'a', 'nice', 'restaurant', 'in', 'london'], + [0, 3, 3, 0, 3, 3], + ['ROOT', '-', 'QUALITY', 'PLACE', '-', 'LOCATION'] + ), + ( + ['show', 'me', 'the', 'coolest', 'hostel', 'in', 'berlin'], + [0, 0, 4, 4, 0, 4, 4], + ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', 'LOCATION'] + ), + ( + ['find', 'a', 'good', 'italian', 'restaurant', 'near', 'work'], + [0, 4, 4, 4, 0, 4, 5], + ['ROOT', '-', 'QUALITY', 'ATTRIBUTE', 'PLACE', 'ATTRIBUTE', 'LOCATION'] + ) +] + + +@plac.annotations( + model=("Model name. Defaults to blank 'en' model.", "option", "m", str), + output_dir=("Optional output directory", "option", "o", Path), + n_iter=("Number of training iterations", "option", "n", int)) +def main(model=None, output_dir=None, n_iter=100): + """Load the model, set up the pipeline and train the parser.""" + if model is not None: + nlp = spacy.load(model) # load existing spaCy model + print("Loaded model '%s'" % model) + else: + nlp = spacy.blank('en') # create blank Language class + print("Created blank 'en' model") + + # add the parser to the pipeline if it doesn't exist + # nlp.create_pipe works for built-ins that are registered with spaCy + if 'parser' not in nlp.pipe_names: + parser = nlp.create_pipe('parser') + nlp.add_pipe(parser, first=True) + # otherwise, get it, so we can add labels to it + else: + parser = nlp.get_pipe('parser') + + for _, _, deps in TRAIN_DATA: + for dep in deps: + parser.add_label(dep) + + other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'parser'] + with nlp.disable_pipes(*other_pipes): # only train parser + optimizer = nlp.begin_training(lambda: []) + for itn in range(n_iter): + random.shuffle(TRAIN_DATA) + losses = {} + for words, heads, deps in TRAIN_DATA: + doc = Doc(nlp.vocab, words=words) + gold = GoldParse(doc, heads=heads, deps=deps) + nlp.update([doc], [gold], sgd=optimizer, losses=losses) + print(losses) + + # test the trained model + test_model(nlp) + + # save model to output directory + if output_dir is not None: + output_dir = Path(output_dir) + if not output_dir.exists(): + output_dir.mkdir() + nlp.to_disk(output_dir) + print("Saved model to", output_dir) + + # test the saved model + print("Loading from", output_dir) + nlp2 = spacy.load(output_dir) + test_model(nlp2) + + +def test_model(nlp): + texts = ["find a hotel with good wifi", + "find me the cheapest gym near work", + "show me the best hotel in berlin"] + docs = nlp.pipe(texts) + for doc in docs: + print(doc.text) + print([(t.text, t.dep_, t.head.text) for t in doc if t.dep_ != '-']) + + +if __name__ == '__main__': + plac.call(main) + + # Expected output: + # find a hotel with good wifi + # [ + # ('find', 'ROOT', 'find'), + # ('hotel', 'PLACE', 'find'), + # ('good', 'QUALITY', 'wifi'), + # ('wifi', 'ATTRIBUTE', 'hotel') + # ] + # find me the cheapest gym near work + # [ + # ('find', 'ROOT', 'find'), + # ('cheapest', 'QUALITY', 'gym'), + # ('gym', 'PLACE', 'find') + # ] + # show me the best hotel in berlin + # [ + # ('show', 'ROOT', 'show'), + # ('best', 'QUALITY', 'hotel'), + # ('hotel', 'PLACE', 'show'), + # ('berlin', 'LOCATION', 'hotel') + # ]