Refactor Language to use new Defaults class, and work on revised data loading. We're getting rid of sputnik's weird file-system wrapper, and using pathlib.

This commit is contained in:
Matthew Honnibal 2016-09-24 14:08:53 +02:00
parent b00f683a0c
commit 9dc8043a7e
1 changed files with 131 additions and 137 deletions

View File

@ -1,31 +1,108 @@
from __future__ import absolute_import
from os import path
from warnings import warn
import io
import pathlib
try:
import ujson as json
except ImportError:
import json
from .tokenizer import Tokenizer
from .vocab import Vocab
from .syntax.parser import Parser
from .tagger import Tagger
from .matcher import Matcher
from .serialize.packer import Packer
from . import attrs
from . import orth
from .syntax.ner import BiluoPushDown
from .syntax.arc_eager import ArcEager
from . import util
from . import about
from .attrs import TAG, DEP, ENT_IOB, ENT_TYPE, HEAD
class Language(object):
lang = None
class Defaults(object):
def __init__(self, lang, path):
self.lang = lang
self.path = path
def Vectors(self):
pass
def Vocab(self, vectors=None, get_lex_attr=None):
if get_lex_attr is None:
get_lex_attr = self.lex_attrs()
if vectors is None:
vectors = self.Vectors()
return Vocab.load(self.path, get_lex_attr=get_lex_attr, vectors=vectors)
def Tokenizer(self, vocab):
return Tokenizer.load(self.path, vocab)
def Tagger(self, vocab):
return Tagger.load(self.path, self.vocab)
def Parser(self, vocab):
if (self.path / 'deps').exists():
return Parser.load(self.path / 'deps', vocab, ArcEager)
else:
return None
def Entity(self, vocab):
if (self.path / 'ner').exists():
return Parser.load(self.path / 'ner', vocab, BiluoPushDown)
else:
return None
def Matcher(self, vocab):
return Matcher.load(self.path, vocab)
def Pipeline(self, nlp):
return [
nlp.tokenizer,
nlp.tagger,
nlp.parser,
nlp.entity]
def dep_labels(self):
return {0: {'ROOT': True}}
def ner_labels(self):
return {0: {'PER': True, 'LOC': True, 'ORG': True, 'MISC': True}}
def lex_attrs(self, *args, **kwargs):
if 'oov_prob' in kwargs:
oov_prob = kwargs.get('oov_prob', -20)
else:
with (self.path / 'vocab' / 'oov_prob').open() as file_:
oov_prob = file_.read().strip()
return {
attrs.LOWER: self.lower,
attrs.NORM: self.norm,
attrs.SHAPE: orth.word_shape,
attrs.PREFIX: self.prefix,
attrs.SUFFIX: self.suffix,
attrs.CLUSTER: self.cluster,
attrs.PROB: lambda string: oov_prob,
attrs.LANG: lambda string: self.lang,
attrs.IS_ALPHA: orth.is_alpha,
attrs.IS_ASCII: orth.is_ascii,
attrs.IS_DIGIT: self.is_digit,
attrs.IS_LOWER: orth.is_lower,
attrs.IS_PUNCT: orth.is_punct,
attrs.IS_SPACE: self.is_space,
attrs.IS_TITLE: orth.is_title,
attrs.IS_UPPER: orth.is_upper,
attrs.IS_BRACKET: orth.is_bracket,
attrs.IS_QUOTE: orth.is_quote,
attrs.IS_LEFT_PUNCT: orth.is_left_punct,
attrs.IS_RIGHT_PUNCT: orth.is_right_punct,
attrs.LIKE_URL: orth.like_url,
attrs.LIKE_NUM: orth.like_number,
attrs.LIKE_EMAIL: orth.like_email,
attrs.IS_STOP: self.is_stop,
attrs.IS_OOV: lambda string: True
}
@staticmethod
def lower(string):
@ -59,94 +136,27 @@ class Language(object):
def is_stop(string):
return 0
@classmethod
def default_lex_attrs(cls, *args, **kwargs):
oov_prob = kwargs.get('oov_prob', -20)
return {
attrs.LOWER: cls.lower,
attrs.NORM: cls.norm,
attrs.SHAPE: orth.word_shape,
attrs.PREFIX: cls.prefix,
attrs.SUFFIX: cls.suffix,
attrs.CLUSTER: cls.cluster,
attrs.PROB: lambda string: oov_prob,
attrs.LANG: lambda string: cls.lang,
attrs.IS_ALPHA: orth.is_alpha,
attrs.IS_ASCII: orth.is_ascii,
attrs.IS_DIGIT: cls.is_digit,
attrs.IS_LOWER: orth.is_lower,
attrs.IS_PUNCT: orth.is_punct,
attrs.IS_SPACE: cls.is_space,
attrs.IS_TITLE: orth.is_title,
attrs.IS_UPPER: orth.is_upper,
attrs.IS_BRACKET: orth.is_bracket,
attrs.IS_QUOTE: orth.is_quote,
attrs.IS_LEFT_PUNCT: orth.is_left_punct,
attrs.IS_RIGHT_PUNCT: orth.is_right_punct,
attrs.LIKE_URL: orth.like_url,
attrs.LIKE_NUM: orth.like_number,
attrs.LIKE_EMAIL: orth.like_email,
attrs.IS_STOP: cls.is_stop,
attrs.IS_OOV: lambda string: True
}
@classmethod
def default_dep_labels(cls):
return {0: {'ROOT': True}}
class Language(object):
'''A text-processing pipeline. Usually you'll load this once per process, and
pass the instance around your program.
'''
@classmethod
def default_ner_labels(cls):
return {0: {'PER': True, 'LOC': True, 'ORG': True, 'MISC': True}}
@classmethod
def default_vocab(cls, package, get_lex_attr=None, vectors_package=None):
if get_lex_attr is None:
if package.has_file('vocab', 'oov_prob'):
with package.open(('vocab', 'oov_prob')) as file_:
oov_prob = float(file_.read().strip())
get_lex_attr = cls.default_lex_attrs(oov_prob=oov_prob)
else:
get_lex_attr = cls.default_lex_attrs()
if hasattr(package, 'dir_path'):
return Vocab.from_package(package, get_lex_attr=get_lex_attr,
vectors_package=vectors_package)
else:
return Vocab.load(package, get_lex_attr)
@classmethod
def default_parser(cls, package, vocab):
if hasattr(package, 'dir_path'):
data_dir = package.dir_path('deps')
else:
data_dir = package
if data_dir and path.exists(data_dir):
return Parser.from_dir(data_dir, vocab.strings, ArcEager)
else:
return None
@classmethod
def default_entity(cls, package, vocab):
if hasattr(package, 'dir_path'):
data_dir = package.dir_path('ner')
else:
data_dir = package
if data_dir and path.exists(data_dir):
return Parser.from_dir(data_dir, vocab.strings, BiluoPushDown)
else:
return None
lang = None
def __init__(self,
data_dir=None,
vocab=None,
tokenizer=None,
tagger=None,
parser=None,
entity=None,
matcher=None,
serializer=None,
load_vectors=True,
package=None,
vectors_package=None):
path=None,
vocab=True,
tokenizer=True,
tagger=True,
parser=True,
entity=True,
matcher=True,
serializer=True,
vectors=True,
pipeline=True,
defaults=True,
data_dir=None):
"""
A model can be specified:
@ -165,44 +175,24 @@ class Language(object):
- spacy.load('en_default', via='/my/package/root')
- spacy.load('en_default==1.0.0', via='/my/package/root')
"""
if package is None:
if data_dir is None:
package = util.get_package_by_name(about.__models__[self.lang])
else:
package = util.get_package(data_dir)
if data_dir is not None and path is None:
warn("'data_dir' argument now named 'path'. Doing what you mean.")
path = data_dir
if isinstance(path, basestring):
path = pathlib.Path(path)
defaults = defaults if defaults is not True else self.get_defaults(self.path)
if load_vectors is not True:
warn("load_vectors is deprecated", DeprecationWarning)
if vocab in (None, True):
vocab = self.default_vocab(package, vectors_package=vectors_package)
self.vocab = vocab
if tokenizer in (None, True):
tokenizer = Tokenizer.from_package(package, self.vocab)
self.tokenizer = tokenizer
if tagger in (None, True):
tagger = Tagger.from_package(package, self.vocab)
self.tagger = tagger
if entity in (None, True):
entity = self.default_entity(package, self.vocab)
self.entity = entity
if parser in (None, True):
parser = self.default_parser(package, self.vocab)
self.parser = parser
if matcher in (None, True):
matcher = Matcher.from_package(package, self.vocab)
self.matcher = matcher
self.pipeline = [
self.tokenizer,
self.tagger,
self.entity,
self.parser,
self.matcher
]
self.vocab = vocab if vocab is not True else defaults.Vocab(vectors=vectors)
self.tokenizer = tokenizer if tokenizer is not True else defaults.Tokenizer(self.vocab)
self.tagger = tagger if tagger is not True else defaults.Tagger(self.vocab)
self.entity = entity if entity is not True else defaults.Entity(self.vocab)
self.parser = parser if parser is not True else defaults.Parser(self.vocab)
self.matcher = matcher if matcher is not True else defaults.Matcher(self.vocab)
self.pipeline = self.pipeline if pipeline is not True else defaults.Pipeline(self)
def __reduce__(self):
args = (
None, # data_dir
self.path,
self.vocab,
self.tokenizer,
self.tagger,
@ -255,23 +245,23 @@ class Language(object):
for doc in stream:
yield doc
def end_training(self, data_dir=None):
if data_dir is None:
data_dir = self.data_dir
def end_training(self, path=None):
if path is None:
path = self.path
if self.parser:
self.parser.model.end_training()
self.parser.model.dump(path.join(data_dir, 'deps', 'model'))
self.parser.model.dump(path / 'deps' / 'model')
if self.entity:
self.entity.model.end_training()
self.entity.model.dump(path.join(data_dir, 'ner', 'model'))
self.entity.model.dump(path / 'ner' / 'model')
if self.tagger:
self.tagger.model.end_training()
self.tagger.model.dump(path.join(data_dir, 'pos', 'model'))
self.tagger.model.dump(path / 'pos' / 'model')
strings_loc = path.join(data_dir, 'vocab', 'strings.json')
with io.open(strings_loc, 'w', encoding='utf8') as file_:
strings_loc = path / 'vocab' / 'strings.json'
with strings_loc.open('w', encoding='utf8') as file_:
self.vocab.strings.dump(file_)
self.vocab.dump(path.join(data_dir, 'vocab', 'lexemes.bin'))
self.vocab.dump(path / 'vocab' / 'lexemes.bin')
if self.tagger:
tagger_freqs = list(self.tagger.freqs[TAG].items())
@ -289,7 +279,7 @@ class Language(object):
else:
entity_iob_freqs = []
entity_type_freqs = []
with open(path.join(data_dir, 'vocab', 'serializer.json'), 'w') as file_:
with (path / 'vocab' / 'serializer.json').open('w') as file_:
file_.write(
json.dumps([
(TAG, tagger_freqs),
@ -298,3 +288,7 @@ class Language(object):
(ENT_TYPE, entity_type_freqs),
(HEAD, head_freqs)
]))
def get_defaults(self, path):
return Defaults(path)