mirror of https://github.com/explosion/spaCy.git
Draft StaticVectors layer
This commit is contained in:
parent
cb9654e98c
commit
9cc7262224
|
@ -0,0 +1,98 @@
|
|||
from typing import List, Tuple, Callable, Optional, cast
|
||||
|
||||
from thinc.initializers import glorot_uniform_init
|
||||
from thinc.util import partial
|
||||
from thinc.types import Ragged, Floats2d, Floats1d
|
||||
from thinc.api import Model, Ops, registry
|
||||
|
||||
from ..tokens import Doc
|
||||
|
||||
|
||||
@registry.layers("spacy.StaticVectors.v1")
|
||||
def StaticVectors(
|
||||
nO: Optional[int] = None,
|
||||
nM: Optional[int] = None,
|
||||
*,
|
||||
dropout: Optional[float] = None,
|
||||
init_W: Callable = glorot_uniform_init,
|
||||
key_attr: str="ORTH"
|
||||
) -> Model[List[Doc], Ragged]:
|
||||
"""Embed Doc objects with their vocab's vectors table, applying a learned
|
||||
linear projection to control the dimensionality. If a dropout rate is
|
||||
specified, the dropout is applied per dimension over the whole batch.
|
||||
"""
|
||||
return Model(
|
||||
"static_vectors",
|
||||
forward,
|
||||
init=partial(init, init_W),
|
||||
params={"W": None},
|
||||
attrs={"key_attr": key_attr, "dropout_rate": dropout},
|
||||
dims={"nO": nO, "nM": nM},
|
||||
)
|
||||
|
||||
|
||||
def forward(
|
||||
model: Model[List[Doc], Ragged], docs: List[Doc], is_train: bool
|
||||
) -> Tuple[Ragged, Callable]:
|
||||
if not len(docs):
|
||||
return _handle_empty(model.ops, model.get_dim("nO"))
|
||||
key_attr = model.attrs["key_attr"]
|
||||
W = cast(Floats2d, model.get_param("W"))
|
||||
V = cast(Floats2d, docs[0].vocab.vectors.data)
|
||||
mask = _get_drop_mask(model.ops, W.shape[0], model.attrs.get("dropout_rate"))
|
||||
|
||||
rows = model.ops.flatten(
|
||||
[doc.vocab.vectors.find(keys=doc.to_array(key_attr)) for doc in docs]
|
||||
)
|
||||
output = Ragged(
|
||||
model.ops.gemm(V[rows], W, trans2=True),
|
||||
model.ops.asarray([len(doc) for doc in docs], dtype="i")
|
||||
)
|
||||
if mask is not None:
|
||||
output.data *= mask
|
||||
|
||||
def backprop(d_output: Ragged) -> List[Doc]:
|
||||
if mask is not None:
|
||||
d_output.data *= mask
|
||||
model.inc_grad("W", model.ops.gemm(d_output.data, V[rows], trans1=True))
|
||||
return []
|
||||
|
||||
return output, backprop
|
||||
|
||||
|
||||
def init(
|
||||
init_W: Callable,
|
||||
model: Model[List[Doc], Ragged],
|
||||
X: Optional[List[Doc]] = None,
|
||||
Y: Optional[Ragged] = None,
|
||||
) -> Model[List[Doc], Ragged]:
|
||||
nM = model.get_dim("nM") if model.has_dim("nM") else None
|
||||
nO = model.get_dim("nO") if model.has_dim("nO") else None
|
||||
if X is not None and len(X):
|
||||
nM = X[0].vocab.vectors.data.shape[1]
|
||||
if Y is not None:
|
||||
nO = Y.data.shape[1]
|
||||
|
||||
if nM is None:
|
||||
raise ValueError(
|
||||
"Cannot initialize StaticVectors layer: nM dimension unset. "
|
||||
"This dimension refers to the width of the vectors table."
|
||||
)
|
||||
if nO is None:
|
||||
raise ValueError(
|
||||
"Cannot initialize StaticVectors layer: nO dimension unset. "
|
||||
"This dimension refers to the output width, after the linear "
|
||||
"projection has been applied."
|
||||
)
|
||||
model.set_dim("nM", nM)
|
||||
model.set_dim("nO", nO)
|
||||
model.set_param("W", init_W(model.ops, (nO, nM)))
|
||||
return model
|
||||
|
||||
|
||||
def _handle_empty(ops: Ops, nO: int):
|
||||
return Ragged(ops.alloc2f(0, nO), ops.alloc1i(0)), lambda d_ragged: []
|
||||
|
||||
|
||||
def _get_drop_mask(ops: Ops, nO: int, rate: Optional[float]) -> Optional[Floats1d]:
|
||||
return ops.get_dropout_mask((nO,), rate) if rate is not None else None
|
Loading…
Reference in New Issue