* Merge updated/simplified Break approach

This commit is contained in:
Matthew Honnibal 2016-04-25 19:44:42 +00:00
commit 97b2bba249
1 changed files with 3 additions and 76 deletions

View File

@ -22,7 +22,6 @@ from ._state cimport StateC, is_space_token
DEF NON_MONOTONIC = True DEF NON_MONOTONIC = True
DEF USE_BREAK = True DEF USE_BREAK = True
DEF USE_ROOT_ARC_SEGMENT = True
cdef weight_t MIN_SCORE = -90000 cdef weight_t MIN_SCORE = -90000
@ -91,8 +90,6 @@ cdef weight_t arc_cost(StateClass stcls, const GoldParseC* gold, int head, int c
cdef bint arc_is_gold(const GoldParseC* gold, int head, int child) nogil: cdef bint arc_is_gold(const GoldParseC* gold, int head, int child) nogil:
if gold.labels[child] == -1: if gold.labels[child] == -1:
return True return True
elif USE_ROOT_ARC_SEGMENT and _is_gold_root(gold, head) and _is_gold_root(gold, child):
return True
elif gold.heads[child] == head: elif gold.heads[child] == head:
return True return True
else: else:
@ -235,25 +232,12 @@ cdef class Break:
return False return False
elif st.stack_depth() < 1: elif st.stack_depth() < 1:
return False return False
# It is okay to predict a sentence boundary if the top item on the stack
# and the first item on the buffer are adjacent tokens. If this is not the
# case, it is still okay if there are only space tokens in between.
# This is checked by testing whether the head of a space token immediately
# preceding the first item in the buffer is the top item on the stack.
# Intervening space tokens must be attached to the previous non-space token.
# Therefore, if the head of a space token that immediately precedes the first
# item on the buffer is the top item on the stack, a sentence boundary can be
# predicted.
elif (st.S(0) + 1) != st.B(0) \
and not (is_space_token(st.safe_get(st.B(0)-1)) and st.H(st.B(0)-1) == st.S(0)):
# Must break at the token boundary
return False
else: else:
return True return True
@staticmethod @staticmethod
cdef int transition(StateC* st, int label) nogil: cdef int transition(StateC* st, int label) nogil:
st.set_break(st.B(0)) st.set_break(st.B_(0).l_edge)
st.fast_forward() st.fast_forward()
@staticmethod @staticmethod
@ -295,8 +279,8 @@ cdef int _get_root(int word, const GoldParseC* gold) nogil:
cdef class ArcEager(TransitionSystem): cdef class ArcEager(TransitionSystem):
@classmethod @classmethod
def get_labels(cls, gold_parses): def get_labels(cls, gold_parses):
move_labels = {SHIFT: {'': True}, REDUCE: {'': True}, RIGHT: {'ROOT': True}, move_labels = {SHIFT: {'': True}, REDUCE: {'': True}, RIGHT: {},
LEFT: {'ROOT': True}, BREAK: {'ROOT': True}} LEFT: {}, BREAK: {'ROOT': True}}
for raw_text, sents in gold_parses: for raw_text, sents in gold_parses:
for (ids, words, tags, heads, labels, iob), ctnts in sents: for (ids, words, tags, heads, labels, iob), ctnts in sents:
for child, head, label in zip(ids, heads, labels): for child, head, label in zip(ids, heads, labels):
@ -395,66 +379,9 @@ cdef class ArcEager(TransitionSystem):
cdef int finalize_state(self, StateC* st) nogil: cdef int finalize_state(self, StateC* st) nogil:
cdef int i cdef int i
cdef int orig_head_id
cdef TokenC* orig_head
cdef int new_edge
cdef int child_i
cdef int head_i
for i in range(st.length): for i in range(st.length):
if st._sent[i].head == 0 and st._sent[i].dep == 0: if st._sent[i].head == 0 and st._sent[i].dep == 0:
st._sent[i].dep = self.root_label st._sent[i].dep = self.root_label
# If we're not using the Break transition, we segment via root-labelled
# arcs between the root words.
elif USE_ROOT_ARC_SEGMENT and st._sent[i].dep == self.root_label:
orig_head_id = i + st._sent[i].head
orig_head = &st._sent[orig_head_id]
if i < orig_head_id: # i is left dependent
orig_head.l_kids -= 1
if i == orig_head.l_edge: # i is left-most child
# find the second left-most child and make it the new l_edge
new_edge = orig_head_id
child_i = i+1
while child_i < orig_head_id:
if child_i + st._sent[child_i].head == orig_head_id:
new_edge = child_i
break
child_i += 1
# then walk up the path to root and update the l_edges of all ancestors
# the logic here works because the tree is guaranteed to be projective
head_i = orig_head_id + orig_head.head
while st._sent[head_i].l_edge == orig_head.l_edge:
st._sent[head_i].l_edge = new_edge
if st._sent[head_i].head == 0:
break
head_i += st._sent[head_i].head
orig_head.l_edge = new_edge
elif i > orig_head_id: # i is right dependent
orig_head.r_kids -= 1
if i == orig_head.r_edge:
# find the second right-most child and make it the new r_edge
new_edge = orig_head_id
child_i = i-1
while child_i > orig_head_id:
if child_i + st._sent[child_i].head == orig_head_id:
new_edge = child_i
break
child_i -= 1
# then walk up the path to root and update the r_edges of all ancestors
# the logic here works because the tree is guaranteed to be projective
head_i = orig_head_id + orig_head.head
while st._sent[head_i].r_edge == orig_head.r_edge:
st._sent[head_i].r_edge = new_edge
if st._sent[head_i].head == 0:
break
head_i += st._sent[head_i].head
orig_head.r_edge = new_edge
# note that this may create non-projective trees if there are arcs
# between nodes on both sides of the new root node
st._sent[i].head = 0
st._sent[st._sent[i].l_edge].sent_start = True
cdef int set_valid(self, int* output, const StateC* st) nogil: cdef int set_valid(self, int* output, const StateC* st) nogil:
cdef bint[N_MOVES] is_valid cdef bint[N_MOVES] is_valid