diff --git a/spacy/_ml.py b/spacy/_ml.py index 004d9ca73..34f66233d 100644 --- a/spacy/_ml.py +++ b/spacy/_ml.py @@ -4,6 +4,7 @@ from thinc.neural import Model, Maxout, Softmax, Affine from thinc.neural._classes.hash_embed import HashEmbed from thinc.neural.ops import NumpyOps, CupyOps from thinc.neural.util import get_array_module +import thinc.extra.load_nlp import random import cytoolz @@ -31,6 +32,7 @@ from . import util import numpy import io +VECTORS_KEY = 'spacy_pretrained_vectors' @layerize def _flatten_add_lengths(seqs, pad=0, drop=0.): @@ -225,45 +227,52 @@ def drop_layer(layer, factor=2.): model.predict = layer return model +def link_vectors_to_models(vocab): + vectors = vocab.vectors + ops = Model.ops + for word in vocab: + if word.orth in vectors.key2row: + word.rank = vectors.key2row[word.orth] + else: + word.rank = 0 + data = ops.asarray(vectors.data) + # Set an entry here, so that vectors are accessed by StaticVectors + # (unideal, I know) + thinc.extra.load_nlp.VECTORS[(ops.device, VECTORS_KEY)] = data -def Tok2Vec(width, embed_size, pretrained_dims=0, **kwargs): - assert pretrained_dims is not None + +def Tok2Vec(width, embed_size, **kwargs): + pretrained_dims = kwargs.get('pretrained_dims', 0) cnn_maxout_pieces = kwargs.get('cnn_maxout_pieces', 3) cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH] - with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}): + with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add, + '*': reapply}): norm = HashEmbed(width, embed_size, column=cols.index(NORM), name='embed_norm') prefix = HashEmbed(width, embed_size//2, column=cols.index(PREFIX), name='embed_prefix') suffix = HashEmbed(width, embed_size//2, column=cols.index(SUFFIX), name='embed_suffix') shape = HashEmbed(width, embed_size//2, column=cols.index(SHAPE), name='embed_shape') + if pretrained_dims is not None and pretrained_dims >= 1: + glove = StaticVectors(VECTORS_KEY, width, column=cols.index(ID)) + + embed = uniqued( + (glove | norm | prefix | suffix | shape) + >> LN(Maxout(width, width*5, pieces=3)), column=5) + else: + embed = uniqued( + (norm | prefix | suffix | shape) + >> LN(Maxout(width, width*4, pieces=3)), column=5) + - trained_vectors = ( - FeatureExtracter(cols) - >> with_flatten( - uniqued( - (norm | prefix | suffix | shape) - >> LN(Maxout(width, width*4, pieces=3)), column=5) - ) - ) convolution = Residual( ExtractWindow(nW=1) >> LN(Maxout(width, width*3, pieces=cnn_maxout_pieces)) ) - if pretrained_dims >= 1: - embed = concatenate_lists(trained_vectors, SpacyVectors) - tok2vec = ( - embed - >> with_flatten( - Affine(width, width+pretrained_dims) - >> convolution ** 4, - pad=4) - ) - else: - embed = trained_vectors - tok2vec = ( - embed - >> with_flatten(convolution ** 4, pad=4) - ) + tok2vec = ( + FeatureExtracter(cols) + >> with_flatten( + embed >> (convolution * 4), pad=4) + ) # Work around thinc API limitations :(. TODO: Revise in Thinc 7 tok2vec.nO = width @@ -271,6 +280,28 @@ def Tok2Vec(width, embed_size, pretrained_dims=0, **kwargs): return tok2vec +def reapply(layer, n_times): + def reapply_fwd(X, drop=0.): + backprops = [] + for i in range(n_times): + Y, backprop = layer.begin_update(X, drop=drop) + X = Y + backprops.append(backprop) + def reapply_bwd(dY, sgd=None): + dX = None + for backprop in reversed(backprops): + dY = backprop(dY, sgd=sgd) + if dX is None: + dX = dY + else: + dX += dY + return dX + return Y, reapply_bwd + return wrap(reapply_fwd, layer) + + + + def asarray(ops, dtype): def forward(X, drop=0.): return ops.asarray(X, dtype=dtype), None @@ -474,8 +505,13 @@ def getitem(i): return X[i], None return layerize(getitem_fwd) -def build_tagger_model(nr_class, token_vector_width, pretrained_dims=0, **cfg): +def build_tagger_model(nr_class, **cfg): embed_size = util.env_opt('embed_size', 4000) + if 'token_vector_width' in cfg: + token_vector_width = cfg['token_vector_width'] + else: + token_vector_width = util.env_opt('token_vector_width', 128) + pretrained_dims = cfg.get('pretrained_dims', 0) with Model.define_operators({'>>': chain, '+': add}): # Input: (doc, tensor) tuples private_tok2vec = Tok2Vec(token_vector_width, embed_size, diff --git a/spacy/cli/train.py b/spacy/cli/train.py index f80e285c0..96233406d 100644 --- a/spacy/cli/train.py +++ b/spacy/cli/train.py @@ -30,14 +30,14 @@ from ..compat import json_dumps n_iter=("number of iterations", "option", "n", int), n_sents=("number of sentences", "option", "ns", int), use_gpu=("Use GPU", "option", "g", int), - resume=("Whether to resume training", "flag", "R", bool), + vectors=("Model to load vectors from", "option", "v"), no_tagger=("Don't train tagger", "flag", "T", bool), no_parser=("Don't train parser", "flag", "P", bool), no_entities=("Don't train NER", "flag", "N", bool), gold_preproc=("Use gold preprocessing", "flag", "G", bool), ) def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0, - use_gpu=-1, resume=False, no_tagger=False, no_parser=False, no_entities=False, + use_gpu=-1, vectors=None, no_tagger=False, no_parser=False, no_entities=False, gold_preproc=False): """ Train a model. Expects data in spaCy's JSON format. @@ -73,25 +73,20 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0, corpus = GoldCorpus(train_path, dev_path, limit=n_sents) n_train_words = corpus.count_train() - if not resume: - lang_class = util.get_lang_class(lang) - nlp = lang_class(pipeline=pipeline) - optimizer = nlp.begin_training(lambda: corpus.train_tuples, device=use_gpu) - else: - print("Load resume") - util.use_gpu(use_gpu) - nlp = _resume_model(lang, pipeline, corpus) - optimizer = nlp.resume_training(device=use_gpu) - lang_class = nlp.__class__ - + lang_class = util.get_lang_class(lang) + nlp = lang_class(pipeline=pipeline) + if vectors: + util.load_model(vectors, vocab=nlp.vocab) + optimizer = nlp.begin_training(lambda: corpus.train_tuples, device=use_gpu) nlp._optimizer = None print("Itn.\tLoss\tUAS\tNER P.\tNER R.\tNER F.\tTag %\tToken %") try: + train_docs = corpus.train_docs(nlp, projectivize=True, noise_level=0.0, + gold_preproc=gold_preproc, max_length=0) + train_docs = list(train_docs) for i in range(n_iter): with tqdm.tqdm(total=n_train_words, leave=False) as pbar: - train_docs = corpus.train_docs(nlp, projectivize=True, noise_level=0.0, - gold_preproc=gold_preproc, max_length=0) losses = {} for batch in minibatch(train_docs, size=batch_sizes): docs, golds = zip(*batch) @@ -104,8 +99,8 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0, util.set_env_log(False) epoch_model_path = output_path / ('model%d' % i) nlp.to_disk(epoch_model_path) - #nlp_loaded = lang_class(pipeline=pipeline) - #nlp_loaded = nlp_loaded.from_disk(epoch_model_path) + nlp_loaded = lang_class(pipeline=pipeline) + nlp_loaded = nlp_loaded.from_disk(epoch_model_path) scorer = nlp.evaluate( corpus.dev_docs( nlp, @@ -124,26 +119,6 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0, except: pass - -def _resume_model(lang, pipeline, corpus): - nlp = util.load_model(lang) - pipes = {getattr(pipe, 'name', None) for pipe in nlp.pipeline} - for name in pipeline: - if name not in pipes: - factory = nlp.Defaults.factories[name] - for pipe in factory(nlp): - if hasattr(pipe, 'begin_training'): - pipe.begin_training(corpus.train_tuples, - pipeline=nlp.pipeline) - nlp.pipeline.append(pipe) - nlp.meta['pipeline'] = pipeline - if nlp.vocab.vectors.data.shape[1] >= 1: - nlp.vocab.vectors.data = Model.ops.asarray( - nlp.vocab.vectors.data) - - return nlp - - def _render_parses(i, to_render): to_render[0].user_data['title'] = "Batch %d" % i with Path('/tmp/entities.html').open('w') as file_: diff --git a/spacy/language.py b/spacy/language.py index 9d1538a18..130d7989d 100644 --- a/spacy/language.py +++ b/spacy/language.py @@ -362,7 +362,6 @@ class Language(object): self._optimizer.device = device return self._optimizer - def begin_training(self, get_gold_tuples=None, **cfg): """Allocate models, pre-process training data and acquire a trainer and optimizer. Used as a contextmanager. diff --git a/spacy/pipeline.pyx b/spacy/pipeline.pyx index fef925d85..f660f88a6 100644 --- a/spacy/pipeline.pyx +++ b/spacy/pipeline.pyx @@ -43,6 +43,7 @@ from .compat import json_dumps from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP, POS from ._ml import rebatch, Tok2Vec, flatten from ._ml import build_text_classifier, build_tagger_model +from ._ml import link_vectors_to_models from .parts_of_speech import X @@ -146,6 +147,7 @@ class BaseThincComponent(object): If no model has been initialized yet, the model is added.''' if self.model is True: self.model = self.Model(**self.cfg) + link_vectors_to_models(self.vocab) def use_params(self, params): '''Modify the pipe's model, to use the given parameter values. @@ -172,8 +174,8 @@ class BaseThincComponent(object): deserialize = OrderedDict(( ('cfg', lambda b: self.cfg.update(ujson.loads(b))), - ('model', load_model), ('vocab', lambda b: self.vocab.from_bytes(b)) + ('model', load_model), )) util.from_bytes(bytes_data, deserialize, exclude) return self @@ -182,8 +184,8 @@ class BaseThincComponent(object): '''Serialize the pipe to disk.''' serialize = OrderedDict(( ('cfg', lambda p: p.open('w').write(json_dumps(self.cfg))), + ('vocab', lambda p: self.vocab.to_disk(p)), ('model', lambda p: p.open('wb').write(self.model.to_bytes())), - ('vocab', lambda p: self.vocab.to_disk(p)) )) util.to_disk(path, serialize, exclude) @@ -197,8 +199,8 @@ class BaseThincComponent(object): deserialize = OrderedDict(( ('cfg', lambda p: self.cfg.update(_load_cfg(p))), - ('model', load_model), ('vocab', lambda p: self.vocab.from_disk(p)), + ('model', load_model), )) util.from_disk(path, deserialize, exclude) return self @@ -246,7 +248,7 @@ class TokenVectorEncoder(BaseThincComponent): self.model = model self.cfg = dict(cfg) self.cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1] - self.cfg.setdefault('cnn_maxout_pieces', 2) + self.cfg.setdefault('cnn_maxout_pieces', 3) def __call__(self, doc): """Add context-sensitive vectors to a `Doc`, e.g. from a CNN or LSTM @@ -318,7 +320,9 @@ class TokenVectorEncoder(BaseThincComponent): pipeline (list): The pipeline the model is part of. """ if self.model is True: + self.cfg['pretrained_dims'] = self.vocab.vectors_length self.model = self.Model(**self.cfg) + link_vectors_to_models(self.vocab) class NeuralTagger(BaseThincComponent): @@ -328,6 +332,7 @@ class NeuralTagger(BaseThincComponent): self.model = model self.cfg = dict(cfg) self.cfg.setdefault('cnn_maxout_pieces', 2) + self.cfg.setdefault('pretrained_dims', self.vocab.vectors.data.shape[1]) def __call__(self, doc): tags = self.predict(([doc], [doc.tensor])) @@ -424,15 +429,14 @@ class NeuralTagger(BaseThincComponent): vocab.morphology = Morphology(vocab.strings, new_tag_map, vocab.morphology.lemmatizer, exc=vocab.morphology.exc) - token_vector_width = pipeline[0].model.nO if self.model is True: - self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width, - pretrained_dims=self.vocab.vectors_length) + self.cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1] + self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg) + link_vectors_to_models(self.vocab) @classmethod - def Model(cls, n_tags, token_vector_width, pretrained_dims=0): - return build_tagger_model(n_tags, token_vector_width, - pretrained_dims) + def Model(cls, n_tags, **cfg): + return build_tagger_model(n_tags, **cfg) def use_params(self, params): with self.model.use_params(params): @@ -453,8 +457,7 @@ class NeuralTagger(BaseThincComponent): if self.model is True: token_vector_width = util.env_opt('token_vector_width', self.cfg.get('token_vector_width', 128)) - self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width, - pretrained_dims=self.vocab.vectors_length) + self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg) self.model.from_bytes(b) def load_tag_map(b): @@ -488,10 +491,7 @@ class NeuralTagger(BaseThincComponent): def from_disk(self, path, **exclude): def load_model(p): if self.model is True: - token_vector_width = util.env_opt('token_vector_width', - self.cfg.get('token_vector_width', 128)) - self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width, - **self.cfg) + self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg) self.model.from_bytes(p.open('rb').read()) def load_tag_map(p): @@ -519,6 +519,7 @@ class NeuralLabeller(NeuralTagger): self.model = model self.cfg = dict(cfg) self.cfg.setdefault('cnn_maxout_pieces', 2) + self.cfg.setdefault('pretrained_dims', self.vocab.vectors.data.shape[1]) @property def labels(self): @@ -541,13 +542,13 @@ class NeuralLabeller(NeuralTagger): self.labels[dep] = len(self.labels) token_vector_width = pipeline[0].model.nO if self.model is True: - self.model = self.Model(len(self.labels), token_vector_width, - pretrained_dims=self.vocab.vectors_length) + self.cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1] + self.model = self.Model(len(self.labels), **self.cfg) + link_vectors_to_models(self.vocab) @classmethod - def Model(cls, n_tags, token_vector_width, pretrained_dims=0): - return build_tagger_model(n_tags, token_vector_width, - pretrained_dims) + def Model(cls, n_tags, **cfg): + return build_tagger_model(n_tags, **cfg) def get_loss(self, docs, golds, scores): scores = self.model.ops.flatten(scores) @@ -623,6 +624,7 @@ class SimilarityHook(BaseThincComponent): """ if self.model is True: self.model = self.Model(pipeline[0].model.nO) + link_vectors_to_models(self.vocab) class TextCategorizer(BaseThincComponent): @@ -696,6 +698,7 @@ class TextCategorizer(BaseThincComponent): self.cfg['pretrained_dims'] = self.vocab.vectors_length self.model = self.Model(len(self.labels), token_vector_width, **self.cfg) + link_vectors_to_models(self.vocab) cdef class EntityRecognizer(LinearParser): diff --git a/spacy/syntax/nn_parser.pyx b/spacy/syntax/nn_parser.pyx index ad0e35428..010b3771e 100644 --- a/spacy/syntax/nn_parser.pyx +++ b/spacy/syntax/nn_parser.pyx @@ -49,6 +49,7 @@ from ..util import get_async, get_cuda_stream from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts from .._ml import Tok2Vec, doc2feats, rebatch, fine_tune from .._ml import Residual, drop_layer +from .._ml import link_vectors_to_models from ..compat import json_dumps from . import _parse_features @@ -309,7 +310,7 @@ cdef class Parser: cfg['beam_density'] = util.env_opt('beam_density', 0.0) if 'pretrained_dims' not in cfg: cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1] - cfg.setdefault('cnn_maxout_pieces', 2) + cfg.setdefault('cnn_maxout_pieces', 3) self.cfg = cfg if 'actions' in self.cfg: for action, labels in self.cfg.get('actions', {}).items(): @@ -791,6 +792,7 @@ cdef class Parser: if self.model is True: cfg['pretrained_dims'] = self.vocab.vectors_length self.model, cfg = self.Model(self.moves.n_moves, **cfg) + link_vectors_to_models(self.vocab) self.cfg.update(cfg) def preprocess_gold(self, docs_golds): @@ -872,8 +874,7 @@ cdef class Parser: msg = util.from_bytes(bytes_data, deserializers, exclude) if 'model' not in exclude: if self.model is True: - self.model, cfg = self.Model(self.moves.n_moves, - pretrained_dims=self.vocab.vectors_length) + self.model, cfg = self.Model(**self.cfg) cfg['pretrained_dims'] = self.vocab.vectors_length else: cfg = {} diff --git a/spacy/vocab.pyx b/spacy/vocab.pyx index b4a244287..01e074617 100644 --- a/spacy/vocab.pyx +++ b/spacy/vocab.pyx @@ -27,6 +27,7 @@ from .vectors import Vectors from . import util from . import attrs from . import symbols +from ._ml import link_vectors_to_models cdef class Vocab: @@ -323,6 +324,7 @@ cdef class Vocab: self.lexemes_from_bytes(file_.read()) if self.vectors is not None: self.vectors.from_disk(path, exclude='strings.json') + link_vectors_to_models(self) return self def to_bytes(self, **exclude): @@ -362,6 +364,7 @@ cdef class Vocab: ('vectors', lambda b: serialize_vectors(b)) )) util.from_bytes(bytes_data, setters, exclude) + link_vectors_to_models(self) return self def lexemes_to_bytes(self): @@ -436,6 +439,7 @@ def unpickle_vocab(sstore, morphology, data_dir, vocab.lex_attr_getters = lex_attr_getters vocab.lexemes_from_bytes(lexemes_data) vocab.length = length + link_vectors_to_models(vocab) return vocab