mirror of https://github.com/explosion/spaCy.git
Use PretrainableMaxouts
This commit is contained in:
parent
807cb2e370
commit
8d2eab74da
|
@ -32,7 +32,7 @@ from preshed.maps cimport map_get
|
||||||
from thinc.api import layerize, chain
|
from thinc.api import layerize, chain
|
||||||
from thinc.neural import Model, Maxout
|
from thinc.neural import Model, Maxout
|
||||||
|
|
||||||
from .._ml import PrecomputableAffine
|
from .._ml import PrecomputableAffine, PrecomputableMaxouts
|
||||||
from . import _parse_features
|
from . import _parse_features
|
||||||
from ._parse_features cimport CONTEXT_SIZE
|
from ._parse_features cimport CONTEXT_SIZE
|
||||||
from ._parse_features cimport fill_context
|
from ._parse_features cimport fill_context
|
||||||
|
@ -93,7 +93,7 @@ def get_greedy_model_for_batch(tokvecs, TransitionSystem moves, upper_model, low
|
||||||
for i in range(len(states)):
|
for i in range(len(states)):
|
||||||
for j, tok_i in enumerate(adjusted_ids[i]):
|
for j, tok_i in enumerate(adjusted_ids[i]):
|
||||||
if tok_i >= 0:
|
if tok_i >= 0:
|
||||||
features[i] += cached[tok_i, j]
|
features[i] += cached[j, tok_i]
|
||||||
|
|
||||||
scores, bp_scores = upper_model.begin_update(features, drop=drop)
|
scores, bp_scores = upper_model.begin_update(features, drop=drop)
|
||||||
scores = upper_model.ops.relu(scores)
|
scores = upper_model.ops.relu(scores)
|
||||||
|
@ -222,7 +222,7 @@ cdef class Parser:
|
||||||
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
|
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
|
||||||
|
|
||||||
upper = chain(Maxout(width, width), Maxout(self.moves.n_moves, width))
|
upper = chain(Maxout(width, width), Maxout(self.moves.n_moves, width))
|
||||||
lower = PrecomputableAffine(width, nF=nr_context_tokens, nI=width)
|
lower = PrecomputableMaxouts(width, nF=nr_context_tokens, nI=width)
|
||||||
return upper, lower
|
return upper, lower
|
||||||
|
|
||||||
def __call__(self, Doc tokens):
|
def __call__(self, Doc tokens):
|
||||||
|
|
Loading…
Reference in New Issue