diff --git a/spacy/tests/pipeline/test_tok2vec.py b/spacy/tests/pipeline/test_tok2vec.py index 659274db9..e423d9a19 100644 --- a/spacy/tests/pipeline/test_tok2vec.py +++ b/spacy/tests/pipeline/test_tok2vec.py @@ -231,7 +231,7 @@ def test_tok2vec_listener_callback(): def test_tok2vec_listener_overfitting(): - """ Test that a pipeline with a listener properly overfits, even if 'tok2vec' is in the annotating components """ + """Test that a pipeline with a listener properly overfits, even if 'tok2vec' is in the annotating components""" orig_config = Config().from_str(cfg_string) nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True) train_examples = [] @@ -264,7 +264,7 @@ def test_tok2vec_listener_overfitting(): def test_tok2vec_frozen_not_annotating(): - """ Test that a pipeline with a frozen tok2vec raises an error when the tok2vec is not annotating """ + """Test that a pipeline with a frozen tok2vec raises an error when the tok2vec is not annotating""" orig_config = Config().from_str(cfg_string) nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True) train_examples = [] @@ -274,12 +274,16 @@ def test_tok2vec_frozen_not_annotating(): for i in range(2): losses = {} - with pytest.raises(ValueError, match=r"the tok2vec embedding layer is not updated"): - nlp.update(train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"]) + with pytest.raises( + ValueError, match=r"the tok2vec embedding layer is not updated" + ): + nlp.update( + train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"] + ) def test_tok2vec_frozen_overfitting(): - """ Test that a pipeline with a frozen & annotating tok2vec can still overfit """ + """Test that a pipeline with a frozen & annotating tok2vec can still overfit""" orig_config = Config().from_str(cfg_string) nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True) train_examples = [] @@ -289,7 +293,13 @@ def test_tok2vec_frozen_overfitting(): for i in range(100): losses = {} - nlp.update(train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"], annotates=["tok2vec"]) + nlp.update( + train_examples, + sgd=optimizer, + losses=losses, + exclude=["tok2vec"], + annotates=["tok2vec"], + ) assert losses["tagger"] < 0.0001 # test the trained model