diff --git a/examples/training/train_new_entity_type.py b/examples/training/train_new_entity_type.py index ab69285a6..5f10beebc 100644 --- a/examples/training/train_new_entity_type.py +++ b/examples/training/train_new_entity_type.py @@ -56,8 +56,7 @@ def train_ner(nlp, train_data, output_dir): losses = {} for batch in minibatch(get_gold_parses(nlp.make_doc, train_data), size=3): docs, golds = zip(*batch) - nlp.update(docs, golds, losses=losses, sgd=optimizer, update_shared=True, - drop=0.35) + nlp.update(docs, golds, losses=losses, sgd=optimizer, drop=0.35) print(losses) if not output_dir: return @@ -100,9 +99,10 @@ def main(model_name, output_directory=None): ) ] - nlp.pipeline.append(TokenVectorEncoder(nlp.vocab)) - nlp.pipeline.append(NeuralEntityRecognizer(nlp.vocab)) - nlp.pipeline[-1].add_label('ANIMAL') + nlp.add_pipe(TokenVectorEncoder(nlp.vocab)) + ner = NeuralEntityRecognizer(nlp.vocab) + ner.add_label('ANIMAL') + nlp.add_pipe(ner) train_ner(nlp, train_data, output_directory) # Test that the entity is recognized