mirror of https://github.com/explosion/spaCy.git
Merge pull request #6104 from svlandeg/fix/debug_model [ci skip]
This commit is contained in:
commit
81606b29bd
|
@ -1,5 +1,9 @@
|
|||
from typing import Dict, Any, Optional
|
||||
import warnings
|
||||
from typing import Dict, Any, Optional, Iterable
|
||||
from pathlib import Path
|
||||
|
||||
from spacy.training import Example
|
||||
from spacy.util import dot_to_object
|
||||
from wasabi import msg
|
||||
from thinc.api import require_gpu, fix_random_seed, set_dropout_rate, Adam
|
||||
from thinc.api import Model, data_validation, set_gpu_allocator
|
||||
|
@ -59,23 +63,24 @@ def debug_model_cli(
|
|||
allocator = config["training"]["gpu_allocator"]
|
||||
if use_gpu >= 0 and allocator:
|
||||
set_gpu_allocator(allocator)
|
||||
nlp, config = util.load_model_from_config(config_path)
|
||||
nlp, config = util.load_model_from_config(config)
|
||||
seed = config["training"]["seed"]
|
||||
if seed is not None:
|
||||
msg.info(f"Fixing random seed: {seed}")
|
||||
fix_random_seed(seed)
|
||||
pipe = nlp.get_pipe(component)
|
||||
if hasattr(pipe, "model"):
|
||||
model = pipe.model
|
||||
else:
|
||||
if not hasattr(pipe, "model"):
|
||||
msg.fail(
|
||||
f"The component '{component}' does not specify an object that holds a Model.",
|
||||
exits=1,
|
||||
)
|
||||
debug_model(model, print_settings=print_settings)
|
||||
model = pipe.model
|
||||
debug_model(config, nlp, model, print_settings=print_settings)
|
||||
|
||||
|
||||
def debug_model(model: Model, *, print_settings: Optional[Dict[str, Any]] = None):
|
||||
def debug_model(
|
||||
config, nlp, model: Model, *, print_settings: Optional[Dict[str, Any]] = None
|
||||
):
|
||||
if not isinstance(model, Model):
|
||||
msg.fail(
|
||||
f"Requires a Thinc Model to be analysed, but found {type(model)} instead.",
|
||||
|
@ -92,10 +97,23 @@ def debug_model(model: Model, *, print_settings: Optional[Dict[str, Any]] = None
|
|||
|
||||
# STEP 1: Initializing the model and printing again
|
||||
X = _get_docs()
|
||||
Y = _get_output(model.ops.xp)
|
||||
# The output vector might differ from the official type of the output layer
|
||||
with data_validation(False):
|
||||
model.initialize(X=X, Y=Y)
|
||||
try:
|
||||
train_corpus = dot_to_object(config, config["training"]["train_corpus"])
|
||||
nlp.begin_training(lambda: train_corpus(nlp))
|
||||
msg.info("Initialized the model with the training corpus.")
|
||||
except ValueError:
|
||||
try:
|
||||
_set_output_dim(nO=7, model=model)
|
||||
nlp.begin_training(lambda: [Example.from_dict(x, {}) for x in X])
|
||||
msg.info("Initialized the model with dummy data.")
|
||||
except:
|
||||
msg.fail(
|
||||
"Could not initialize the model: you'll have to provide a valid train_corpus argument in the config file.",
|
||||
exits=1,
|
||||
)
|
||||
|
||||
if print_settings.get("print_after_init"):
|
||||
msg.divider(f"STEP 1 - after initialization")
|
||||
_print_model(model, print_settings)
|
||||
|
@ -103,9 +121,18 @@ def debug_model(model: Model, *, print_settings: Optional[Dict[str, Any]] = None
|
|||
# STEP 2: Updating the model and printing again
|
||||
optimizer = Adam(0.001)
|
||||
set_dropout_rate(model, 0.2)
|
||||
# ugly hack to deal with Tok2Vec listeners
|
||||
tok2vec = None
|
||||
if model.has_ref("tok2vec") and model.get_ref("tok2vec").name == "tok2vec-listener":
|
||||
tok2vec = nlp.get_pipe("tok2vec")
|
||||
goldY = None
|
||||
for e in range(3):
|
||||
Y, get_dX = model.begin_update(_get_docs())
|
||||
dY = get_gradient(model, Y)
|
||||
if tok2vec:
|
||||
tok2vec.predict(X)
|
||||
Y, get_dX = model.begin_update(X)
|
||||
if goldY is None:
|
||||
goldY = _simulate_gold(Y)
|
||||
dY = get_gradient(goldY, Y, model.ops)
|
||||
get_dX(dY)
|
||||
model.finish_update(optimizer)
|
||||
if print_settings.get("print_after_training"):
|
||||
|
@ -113,15 +140,25 @@ def debug_model(model: Model, *, print_settings: Optional[Dict[str, Any]] = None
|
|||
_print_model(model, print_settings)
|
||||
|
||||
# STEP 3: the final prediction
|
||||
prediction = model.predict(_get_docs())
|
||||
prediction = model.predict(X)
|
||||
if print_settings.get("print_prediction"):
|
||||
msg.divider(f"STEP 3 - prediction")
|
||||
msg.info(str(prediction))
|
||||
|
||||
msg.good(f"Succesfully ended analysis - model looks good.")
|
||||
|
||||
def get_gradient(model, Y):
|
||||
goldY = _get_output(model.ops.xp)
|
||||
return Y - goldY
|
||||
|
||||
def get_gradient(goldY, Y, ops):
|
||||
return ops.asarray(Y) - ops.asarray(goldY)
|
||||
|
||||
|
||||
def _simulate_gold(element, counter=1):
|
||||
if isinstance(element, Iterable):
|
||||
for i in range(len(element)):
|
||||
element[i] = _simulate_gold(element[i], counter + i)
|
||||
return element
|
||||
else:
|
||||
return 1 / counter
|
||||
|
||||
|
||||
def _sentences():
|
||||
|
@ -138,8 +175,13 @@ def _get_docs(lang: str = "en"):
|
|||
return list(nlp.pipe(_sentences()))
|
||||
|
||||
|
||||
def _get_output(xp):
|
||||
return xp.asarray([i + 10 for i, _ in enumerate(_get_docs())], dtype="float32")
|
||||
def _set_output_dim(model, nO):
|
||||
# simulating dim inference by directly setting the nO argument of the model
|
||||
if model.has_dim("nO") is None:
|
||||
model.set_dim("nO", nO)
|
||||
if model.has_ref("output_layer"):
|
||||
if model.get_ref("output_layer").has_dim("nO") is None:
|
||||
model.get_ref("output_layer").set_dim("nO", nO)
|
||||
|
||||
|
||||
def _print_model(model, print_settings):
|
||||
|
|
|
@ -545,7 +545,8 @@ class Errors:
|
|||
E949 = ("Can only create an alignment when the texts are the same.")
|
||||
E952 = ("The section '{name}' is not a valid section in the provided config.")
|
||||
E953 = ("Mismatched IDs received by the Tok2Vec listener: {id1} vs. {id2}")
|
||||
E954 = ("The Tok2Vec listener did not receive a valid input.")
|
||||
E954 = ("The Tok2Vec listener did not receive any valid input from an upstream "
|
||||
"component.")
|
||||
E955 = ("Can't find table(s) '{table}' for language '{lang}' in spacy-lookups-data.")
|
||||
E956 = ("Can't find component '{name}' in [components] block in the config. "
|
||||
"Available components: {opts}")
|
||||
|
|
Loading…
Reference in New Issue