mirror of https://github.com/explosion/spaCy.git
Fix fine-tune weight mixture
This commit is contained in:
parent
c10f63bf10
commit
80acbc5f1f
16
spacy/_ml.py
16
spacy/_ml.py
|
@ -370,24 +370,20 @@ def fine_tune(embedding, combine=None):
|
||||||
vecs, bp_vecs = embedding.begin_update(docs, drop=drop)
|
vecs, bp_vecs = embedding.begin_update(docs, drop=drop)
|
||||||
flat_tokvecs = embedding.ops.flatten(tokvecs)
|
flat_tokvecs = embedding.ops.flatten(tokvecs)
|
||||||
flat_vecs = embedding.ops.flatten(vecs)
|
flat_vecs = embedding.ops.flatten(vecs)
|
||||||
alpha = model.mix
|
|
||||||
minus = 1-model.mix
|
|
||||||
output = embedding.ops.unflatten(
|
output = embedding.ops.unflatten(
|
||||||
(alpha * flat_tokvecs + minus * flat_vecs), lengths)
|
(model.mix[0] * flat_tokvecs + model.mix[1] * flat_vecs), lengths)
|
||||||
|
|
||||||
def fine_tune_bwd(d_output, sgd=None):
|
def fine_tune_bwd(d_output, sgd=None):
|
||||||
flat_grad = model.ops.flatten(d_output)
|
flat_grad = model.ops.flatten(d_output)
|
||||||
model.d_mix += flat_tokvecs.dot(flat_grad.T).sum()
|
model.d_mix[0] += flat_tokvecs.dot(flat_grad.T).sum()
|
||||||
model.d_mix += 1-flat_vecs.dot(flat_grad.T).sum()
|
model.d_mix[1] += flat_vecs.dot(flat_grad.T).sum()
|
||||||
|
|
||||||
bp_vecs([d_o * minus for d_o in d_output], sgd=sgd)
|
bp_vecs([d_o * model.mix[1] for d_o in d_output], sgd=sgd)
|
||||||
d_output = [d_o * alpha for d_o in d_output]
|
|
||||||
sgd(model._mem.weights, model._mem.gradient, key=model.id)
|
sgd(model._mem.weights, model._mem.gradient, key=model.id)
|
||||||
model.mix = model.ops.xp.minimum(model.mix, 1.0)
|
return [d_o * model.mix[0] for d_o in d_output]
|
||||||
return d_output
|
|
||||||
return output, fine_tune_bwd
|
return output, fine_tune_bwd
|
||||||
model = wrap(fine_tune_fwd, embedding)
|
model = wrap(fine_tune_fwd, embedding)
|
||||||
model.mix = model._mem.add((model.id, 'mix'), (1,))
|
model.mix = model._mem.add((model.id, 'mix'), (2,))
|
||||||
model.mix.fill(0.5)
|
model.mix.fill(0.5)
|
||||||
model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix'))
|
model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix'))
|
||||||
return model
|
return model
|
||||||
|
|
Loading…
Reference in New Issue