mirror of https://github.com/explosion/spaCy.git
* Use language base class
This commit is contained in:
parent
f2f699ac18
commit
8083a07c3e
|
@ -1,183 +1,11 @@
|
|||
from __future__ import unicode_literals
|
||||
from __future__ import unicode_literals, print_function
|
||||
|
||||
from os import path
|
||||
import re
|
||||
import struct
|
||||
import json
|
||||
|
||||
from .. import orth
|
||||
from ..vocab import Vocab
|
||||
from ..tokenizer import Tokenizer
|
||||
from ..syntax.arc_eager import ArcEager
|
||||
from ..syntax.ner import BiluoPushDown
|
||||
from ..syntax.parser import ParserFactory
|
||||
from ..serialize.bits import BitArray
|
||||
from ..matcher import Matcher
|
||||
|
||||
from ..tokens import Doc
|
||||
from ..multi_words import RegexMerger
|
||||
|
||||
from .pos import EnPosTagger
|
||||
from .pos import POS_TAGS
|
||||
from .attrs import get_flags
|
||||
from . import regexes
|
||||
|
||||
from ..util import read_lang_data
|
||||
|
||||
from ..attrs import TAG, HEAD, DEP, ENT_TYPE, ENT_IOB
|
||||
from ..language import Language
|
||||
|
||||
|
||||
def get_lex_props(string, oov_prob=-30, is_oov=False):
|
||||
return {
|
||||
'flags': get_flags(string, is_oov=is_oov),
|
||||
'length': len(string),
|
||||
'orth': string,
|
||||
'lower': string.lower(),
|
||||
'norm': string,
|
||||
'shape': orth.word_shape(string),
|
||||
'prefix': string[0],
|
||||
'suffix': string[-3:],
|
||||
'cluster': 0,
|
||||
'prob': oov_prob,
|
||||
'sentiment': 0
|
||||
}
|
||||
|
||||
get_lex_attr = {}
|
||||
|
||||
if_model_present = -1
|
||||
LOCAL_DATA_DIR = path.join(path.dirname(__file__), 'data')
|
||||
|
||||
|
||||
class English(object):
|
||||
"""The English NLP pipeline.
|
||||
|
||||
Example:
|
||||
|
||||
Load data from default directory:
|
||||
|
||||
>>> nlp = English()
|
||||
>>> nlp = English(data_dir=u'')
|
||||
|
||||
Load data from specified directory:
|
||||
|
||||
>>> nlp = English(data_dir=u'path/to/data_directory')
|
||||
|
||||
Disable (and avoid loading) parts of the processing pipeline:
|
||||
|
||||
>>> nlp = English(vectors=False, parser=False, tagger=False, entity=False)
|
||||
|
||||
Start with nothing loaded:
|
||||
|
||||
>>> nlp = English(data_dir=None)
|
||||
"""
|
||||
ParserTransitionSystem = ArcEager
|
||||
EntityTransitionSystem = BiluoPushDown
|
||||
|
||||
def __init__(self,
|
||||
data_dir=LOCAL_DATA_DIR,
|
||||
Tokenizer=Tokenizer.from_dir,
|
||||
Tagger=EnPosTagger,
|
||||
Parser=ParserFactory(ParserTransitionSystem),
|
||||
Entity=ParserFactory(EntityTransitionSystem),
|
||||
Matcher=Matcher.from_dir,
|
||||
Packer=None,
|
||||
load_vectors=True
|
||||
):
|
||||
self.data_dir = data_dir
|
||||
|
||||
if path.exists(path.join(data_dir, 'vocab', 'oov_prob')):
|
||||
oov_prob = float(open(path.join(data_dir, 'vocab', 'oov_prob')).read())
|
||||
else:
|
||||
oov_prob = None
|
||||
|
||||
self.vocab = Vocab(data_dir=path.join(data_dir, 'vocab') if data_dir else None,
|
||||
get_lex_props=get_lex_props, load_vectors=load_vectors,
|
||||
pos_tags=POS_TAGS,
|
||||
oov_prob=oov_prob)
|
||||
if Tagger is True:
|
||||
Tagger = EnPosTagger
|
||||
if Parser is True:
|
||||
transition_system = self.ParserTransitionSystem
|
||||
Parser = lambda s, d: parser.Parser(s, d, transition_system)
|
||||
if Entity is True:
|
||||
transition_system = self.EntityTransitionSystem
|
||||
Entity = lambda s, d: parser.Parser(s, d, transition_system)
|
||||
|
||||
self.tokenizer = Tokenizer(self.vocab, path.join(data_dir, 'tokenizer'))
|
||||
|
||||
if Tagger and path.exists(path.join(data_dir, 'pos')):
|
||||
self.tagger = Tagger(self.vocab.strings, data_dir)
|
||||
else:
|
||||
self.tagger = None
|
||||
if Parser and path.exists(path.join(data_dir, 'deps')):
|
||||
self.parser = Parser(self.vocab.strings, path.join(data_dir, 'deps'))
|
||||
else:
|
||||
self.parser = None
|
||||
if Entity and path.exists(path.join(data_dir, 'ner')):
|
||||
self.entity = Entity(self.vocab.strings, path.join(data_dir, 'ner'))
|
||||
else:
|
||||
self.entity = None
|
||||
if Matcher:
|
||||
self.matcher = Matcher(self.vocab, data_dir)
|
||||
else:
|
||||
self.matcher = None
|
||||
if Packer:
|
||||
self.packer = Packer(self.vocab, data_dir)
|
||||
else:
|
||||
self.packer = None
|
||||
self.mwe_merger = RegexMerger([
|
||||
('IN', 'O', regexes.MW_PREPOSITIONS_RE),
|
||||
('CD', 'TIME', regexes.TIME_RE),
|
||||
('NNP', 'DATE', regexes.DAYS_RE),
|
||||
('CD', 'MONEY', regexes.MONEY_RE)])
|
||||
|
||||
def __call__(self, text, tag=True, parse=True, entity=True, merge_mwes=False):
|
||||
"""Apply the pipeline to some text. The text can span multiple sentences,
|
||||
and can contain arbtrary whitespace. Alignment into the original string
|
||||
is preserved.
|
||||
|
||||
Args:
|
||||
text (unicode): The text to be processed.
|
||||
|
||||
Returns:
|
||||
tokens (spacy.tokens.Doc):
|
||||
|
||||
>>> from spacy.en import English
|
||||
>>> nlp = English()
|
||||
>>> tokens = nlp('An example sentence. Another example sentence.')
|
||||
>>> tokens[0].orth_, tokens[0].head.tag_
|
||||
('An', 'NN')
|
||||
"""
|
||||
tokens = self.tokenizer(text)
|
||||
if self.tagger and tag:
|
||||
self.tagger(tokens)
|
||||
if self.matcher and entity:
|
||||
self.matcher(tokens)
|
||||
if self.parser and parse:
|
||||
self.parser(tokens)
|
||||
if self.entity and entity:
|
||||
self.entity(tokens)
|
||||
if merge_mwes and self.mwe_merger is not None:
|
||||
self.mwe_merger(tokens)
|
||||
return tokens
|
||||
|
||||
def end_training(self, data_dir=None):
|
||||
if data_dir is None:
|
||||
data_dir = self.data_dir
|
||||
self.parser.model.end_training()
|
||||
self.entity.model.end_training()
|
||||
self.tagger.model.end_training()
|
||||
self.vocab.strings.dump(path.join(data_dir, 'vocab', 'strings.txt'))
|
||||
|
||||
with open(path.join(data_dir, 'vocab', 'serializer.json'), 'w') as file_:
|
||||
file_.write(
|
||||
json.dumps([
|
||||
(TAG, list(self.tagger.freqs[TAG].items())),
|
||||
(DEP, list(self.parser.moves.freqs[DEP].items())),
|
||||
(ENT_IOB, list(self.entity.moves.freqs[ENT_IOB].items())),
|
||||
(ENT_TYPE, list(self.entity.moves.freqs[ENT_TYPE].items())),
|
||||
(HEAD, list(self.parser.moves.freqs[HEAD].items()))]))
|
||||
|
||||
@property
|
||||
def tags(self):
|
||||
"""Deprecated. List of part-of-speech tag names."""
|
||||
return self.tagger.tag_names
|
||||
class English(Language):
|
||||
@classmethod
|
||||
def default_data_dir(cls):
|
||||
return path.join(path.dirname(__file__), 'data')
|
||||
|
|
Loading…
Reference in New Issue