mirror of https://github.com/explosion/spaCy.git
Add linguistic annotations 101 content
This commit is contained in:
parent
9ed6b48a49
commit
7ef7f0b42c
|
@ -2,6 +2,54 @@
|
||||||
|
|
||||||
include ../../_includes/_mixins
|
include ../../_includes/_mixins
|
||||||
|
|
||||||
|
+h(2, "annotations") Linguistic annotations
|
||||||
|
|
||||||
|
p
|
||||||
|
| spaCy provides a variety of linguistic annotations to give you insights
|
||||||
|
| into a text's grammatical structure. This includes the word types,
|
||||||
|
| i.e. the parts of speech, and how the words are related to each other.
|
||||||
|
| For example, if you're analysing text, it makes a #[em huge] difference
|
||||||
|
| whether a noun is the subject of a sentence, or the object – or whether
|
||||||
|
| "google" is used as a verb, or refers to the website or company in a
|
||||||
|
| specific context.
|
||||||
|
|
||||||
|
p
|
||||||
|
| Once you've downloaded and installed a #[+a("/docs/usage/models") model],
|
||||||
|
| you can load it via #[+api("spacy#load") #[code spacy.load()]]. This will
|
||||||
|
| return a #[code Language] object contaning all components and data needed
|
||||||
|
| to process text. We usually call it #[code nlp]. Calling the #[code nlp]
|
||||||
|
| object on a string of text will return a processed #[code Doc]:
|
||||||
|
|
||||||
|
+code.
|
||||||
|
import spacy
|
||||||
|
|
||||||
|
nlp = spacy.load('en')
|
||||||
|
doc = nlp(u'Apple is looking at buying U.K. startup for $1 billion')
|
||||||
|
|
||||||
|
+h(3, "annotations-token") Tokenization
|
||||||
|
|
||||||
|
include _spacy-101/_tokenization
|
||||||
|
|
||||||
|
|
||||||
|
+h(3, "annotations-pos-deps") Part-of-speech tags and dependencies
|
||||||
|
+tag-model("dependency parse")
|
||||||
|
|
||||||
|
include _spacy-101/_pos-deps
|
||||||
|
|
||||||
|
+h(3, "annotations-ner") Named Entities
|
||||||
|
+tag-model("named entities")
|
||||||
|
|
||||||
|
include _spacy-101/_named-entities
|
||||||
|
|
||||||
|
+h(2, "vectors-similarity") Word vectors and similarity
|
||||||
|
+tag-model("vectors")
|
||||||
|
|
||||||
|
include _spacy-101/_similarity
|
||||||
|
|
||||||
|
include _spacy-101/_word-vectors
|
||||||
|
|
||||||
|
+h(2, "pipelines") Pipelines
|
||||||
|
|
||||||
+h(2, "architecture") Architecture
|
+h(2, "architecture") Architecture
|
||||||
|
|
||||||
+image
|
+image
|
||||||
|
|
Loading…
Reference in New Issue