diff --git a/spacy/tests/spans/test_span.py b/spacy/tests/spans/test_span.py index aee869c5b..79505f1cb 100644 --- a/spacy/tests/spans/test_span.py +++ b/spacy/tests/spans/test_span.py @@ -1,19 +1,22 @@ +# coding: utf-8 from __future__ import unicode_literals -from spacy.attrs import HEAD -from spacy.en import English -from spacy.tokens.doc import Doc -import numpy as np + +from ..util import get_doc import pytest @pytest.fixture -def doc(EN): - return EN('This is a sentence. This is another sentence. And a third.') +def doc(en_tokenizer): + text = "This is a sentence. This is another sentence. And a third." + heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3, 0, 1, -2, -1] + deps = ['nsubj', 'ROOT', 'det', 'attr', 'punct', 'nsubj', 'ROOT', 'det', + 'attr', 'punct', 'ROOT', 'det', 'npadvmod', 'punct'] + tokens = en_tokenizer(text) + return get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, deps=deps) -@pytest.mark.models -def test_sent_spans(doc): +def test_spans_sent_spans(doc): sents = list(doc.sents) assert sents[0].start == 0 assert sents[0].end == 5 @@ -21,73 +24,50 @@ def test_sent_spans(doc): assert sum(len(sent) for sent in sents) == len(doc) -@pytest.mark.models -def test_root(doc): - np = doc[2:4] - assert len(np) == 2 - assert np.orth_ == 'a sentence' - assert np.root.orth_ == 'sentence' - assert np.root.head.orth_ == 'is' +def test_spans_root(doc): + span = doc[2:4] + assert len(span) == 2 + assert span.text == 'a sentence' + assert span.root.text == 'sentence' + assert span.root.head.text == 'is' -def test_root2(EN): - text = 'through North and South Carolina' - doc = EN(text) - heads = np.asarray([[0, 3, -1, -2, -4]], dtype='int32') - doc.from_array([HEAD], heads.T) - south_carolina = doc[-2:] - assert south_carolina.root.text == 'Carolina' +def test_spans_root2(en_tokenizer): + text = "through North and South Carolina" + heads = [0, 3, -1, -2, -4] + tokens = en_tokenizer(text) + doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads) + assert doc[-2:].root.text == 'Carolina' -def test_sent(doc): - '''Test new span.sent property''' - #return EN('This is a sentence. This is another sentence. And a third.') - heads = np.asarray([[1, 0, -1, -1, -1, 1, 0, -1, -1, -1, 2, 1, 0, -1]], dtype='int32') - doc.from_array([HEAD], heads.T) +def test_spans_span_sent(doc): + """Test span.sent property""" assert len(list(doc.sents)) - span = doc[:2] - assert span.sent.root.text == 'is' - assert span.sent.text == 'This is a sentence.' - span = doc[6:7] - assert span.sent.root.left_edge.text == 'This' + assert doc[:2].sent.root.text == 'is' + assert doc[:2].sent.text == 'This is a sentence .' + assert doc[6:7].sent.root.left_edge.text == 'This' -def test_default_sentiment(EN): - '''Test new span.sentiment property's default averaging behaviour''' - good = EN.vocab[u'good'] - good.sentiment = 3.0 - bad = EN.vocab[u'bad'] - bad.sentiment = -2.0 - - doc = Doc(EN.vocab, [u'good', 'stuff', u'bad', u'stuff']) - - good_stuff = doc[:2] - assert good_stuff.sentiment == 3.0 / 2 - - bad_stuff = doc[-2:] - assert bad_stuff.sentiment == -2. / 2 - - good_stuff_bad = doc[:-1] - assert good_stuff_bad.sentiment == (3.+-2) / 3. +def test_spans_default_sentiment(en_tokenizer): + """Test span.sentiment property's default averaging behaviour""" + text = "good stuff bad stuff" + tokens = en_tokenizer(text) + tokens.vocab[tokens[0].text].sentiment = 3.0 + tokens.vocab[tokens[2].text].sentiment = -2.0 + doc = get_doc(tokens.vocab, [t.text for t in tokens]) + assert doc[:2].sentiment == 3.0 / 2 + assert doc[-2:].sentiment == -2. / 2 + assert doc[:-1].sentiment == (3.+-2) / 3. - -def test_override_sentiment(EN): - '''Test new span.sentiment property's default averaging behaviour''' - good = EN.vocab[u'good'] - good.sentiment = 3.0 - bad = EN.vocab[u'bad'] - bad.sentiment = -2.0 - - doc = Doc(EN.vocab, [u'good', 'stuff', u'bad', u'stuff']) - +def test_spans_override_sentiment(en_tokenizer): + """Test span.sentiment property's default averaging behaviour""" + text = "good stuff bad stuff" + tokens = en_tokenizer(text) + tokens.vocab[tokens[0].text].sentiment = 3.0 + tokens.vocab[tokens[2].text].sentiment = -2.0 + doc = get_doc(tokens.vocab, [t.text for t in tokens]) doc.user_span_hooks['sentiment'] = lambda span: 10.0 - - good_stuff = doc[:2] - assert good_stuff.sentiment == 10.0 - - bad_stuff = doc[-2:] - assert bad_stuff.sentiment == 10.0 - - good_stuff_bad = doc[:-1] - assert good_stuff_bad.sentiment == 10.0 + assert doc[:2].sentiment == 10.0 + assert doc[-2:].sentiment == 10.0 + assert doc[:-1].sentiment == 10.0