diff --git a/spacy/cli/evaluate.py b/spacy/cli/evaluate.py index df391d730..468698e2f 100644 --- a/spacy/cli/evaluate.py +++ b/spacy/cli/evaluate.py @@ -17,7 +17,7 @@ from .. import displacy gpu_id=("Use GPU", "option", "g", int), displacy_path=("Directory to output rendered parses as HTML", "option", "dp", str), displacy_limit=("Limit of parses to render as HTML", "option", "dl", int), - return_scores=("Return dict containing model scores", "flag", "r", bool), + return_scores=("Return dict containing model scores", "flag", "R", bool), ) def evaluate( model, diff --git a/website/docs/api/cli.md b/website/docs/api/cli.md index 0bacfb3a0..b8ff936cb 100644 --- a/website/docs/api/cli.md +++ b/website/docs/api/cli.md @@ -288,23 +288,23 @@ $ python -m spacy pretrain [texts_loc] [vectors_model] [output_dir] [--width] [--n-save_every] ``` -| Argument | Type | Description | -| ---------------------- | ---------- | --------------------------------------------------------------------------------------------------------------------------------- | -| `texts_loc` | positional | Path to JSONL file with raw texts to learn from, with text provided as the key `"text"`. [See here](#pretrain-jsonl) for details. | -| `vectors_model` | positional | Name or path to spaCy model with vectors to learn from. | -| `output_dir` | positional | Directory to write models to on each epoch. | -| `--width`, `-cw` | option | Width of CNN layers. | -| `--depth`, `-cd` | option | Depth of CNN layers. | -| `--embed-rows`, `-er` | option | Number of embedding rows. | -| `--dropout`, `-d` | option | Dropout rate. | -| `--batch-size`, `-bs` | option | Number of words per training batch. | -| `--max-length`, `-xw` | option | Maximum words per example. Longer examples are discarded. | -| `--min-length`, `-nw` | option | Minimum words per example. Shorter examples are discarded. | -| `--seed`, `-s` | option | Seed for random number generators. | -| `--n-iter`, `-i` | option | Number of iterations to pretrain. | -| `--use-vectors`, `-uv` | flag | Whether to use the static vectors as input features. | -| `--n-save_every`, `-se` | option | Save model every X batches. | -| **CREATES** | weights | The pre-trained weights that can be used to initialize `spacy train`. | +| Argument | Type | Description | +| ----------------------- | ---------- | --------------------------------------------------------------------------------------------------------------------------------- | +| `texts_loc` | positional | Path to JSONL file with raw texts to learn from, with text provided as the key `"text"`. [See here](#pretrain-jsonl) for details. | +| `vectors_model` | positional | Name or path to spaCy model with vectors to learn from. | +| `output_dir` | positional | Directory to write models to on each epoch. | +| `--width`, `-cw` | option | Width of CNN layers. | +| `--depth`, `-cd` | option | Depth of CNN layers. | +| `--embed-rows`, `-er` | option | Number of embedding rows. | +| `--dropout`, `-d` | option | Dropout rate. | +| `--batch-size`, `-bs` | option | Number of words per training batch. | +| `--max-length`, `-xw` | option | Maximum words per example. Longer examples are discarded. | +| `--min-length`, `-nw` | option | Minimum words per example. Shorter examples are discarded. | +| `--seed`, `-s` | option | Seed for random number generators. | +| `--n-iter`, `-i` | option | Number of iterations to pretrain. | +| `--use-vectors`, `-uv` | flag | Whether to use the static vectors as input features. | +| `--n-save_every`, `-se` | option | Save model every X batches. | +| **CREATES** | weights | The pre-trained weights that can be used to initialize `spacy train`. | ### JSONL format for raw text {#pretrain-jsonl} @@ -388,6 +388,7 @@ $ python -m spacy evaluate [model] [data_path] [--displacy-path] [--displacy-lim | `--displacy-limit`, `-dl` | option | Number of parses to generate per file. Defaults to `25`. Keep in mind that a significantly higher number might cause the `.html` files to render slowly. | | `--gpu-id`, `-g` | option | GPU to use, if any. Defaults to `-1` for CPU. | | `--gold-preproc`, `-G` | flag | Use gold preprocessing. | +| `--return-scores`, `-R` | flag | Return dict containing model scores. | | **CREATES** | `stdout`, HTML | Training results and optional displaCy visualizations. | ## Package {#package}