mirror of https://github.com/explosion/spaCy.git
write entity linking pipe to file and keep vocab consistent between kb and nlp
This commit is contained in:
parent
b12001f368
commit
78dd3e11da
|
@ -40,8 +40,8 @@ def create_kb(nlp, max_entities_per_alias, min_occ,
|
|||
title_list = list(title_to_id.keys())
|
||||
|
||||
# TODO: remove this filter (just for quicker testing of code)
|
||||
# title_list = title_list[0:34200]
|
||||
# title_to_id = {t: title_to_id[t] for t in title_list}
|
||||
title_list = title_list[0:342]
|
||||
title_to_id = {t: title_to_id[t] for t in title_list}
|
||||
|
||||
entity_list = [title_to_id[x] for x in title_list]
|
||||
|
||||
|
|
|
@ -6,6 +6,7 @@ import random
|
|||
from spacy.util import minibatch, compounding
|
||||
|
||||
from examples.pipeline.wiki_entity_linking import wikipedia_processor as wp, kb_creator, training_set_creator, run_el
|
||||
from examples.pipeline.wiki_entity_linking.kb_creator import DESC_WIDTH
|
||||
|
||||
import spacy
|
||||
from spacy.vocab import Vocab
|
||||
|
@ -22,41 +23,48 @@ ENTITY_DEFS = 'C:/Users/Sofie/Documents/data/wikipedia/entity_defs.csv'
|
|||
ENTITY_DESCR = 'C:/Users/Sofie/Documents/data/wikipedia/entity_descriptions.csv'
|
||||
|
||||
KB_FILE = 'C:/Users/Sofie/Documents/data/wikipedia/kb'
|
||||
VOCAB_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/vocab'
|
||||
NLP_1_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/nlp_1'
|
||||
NLP_2_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/nlp_2'
|
||||
|
||||
TRAINING_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/training_data_nel/'
|
||||
|
||||
MAX_CANDIDATES = 10
|
||||
MIN_PAIR_OCC = 5
|
||||
DOC_CHAR_CUTOFF = 300
|
||||
EPOCHS = 10
|
||||
EPOCHS = 2
|
||||
DROPOUT = 0.1
|
||||
|
||||
|
||||
def run_pipeline():
|
||||
print("START", datetime.datetime.now())
|
||||
print()
|
||||
nlp = spacy.load('en_core_web_lg')
|
||||
my_kb = None
|
||||
nlp_1 = spacy.load('en_core_web_lg')
|
||||
nlp_2 = None
|
||||
kb_1 = None
|
||||
kb_2 = None
|
||||
|
||||
# one-time methods to create KB and write to file
|
||||
to_create_prior_probs = False
|
||||
to_create_entity_counts = False
|
||||
to_create_kb = False
|
||||
to_create_kb = True
|
||||
|
||||
# read KB back in from file
|
||||
to_read_kb = True
|
||||
to_test_kb = False
|
||||
to_test_kb = True
|
||||
|
||||
# create training dataset
|
||||
create_wp_training = False
|
||||
|
||||
# train the EL pipe
|
||||
train_pipe = True
|
||||
measure_performance = False
|
||||
|
||||
# test the EL pipe on a simple example
|
||||
to_test_pipeline = True
|
||||
|
||||
# write the NLP object, read back in and test again
|
||||
test_nlp_io = True
|
||||
|
||||
# STEP 1 : create prior probabilities from WP
|
||||
# run only once !
|
||||
if to_create_prior_probs:
|
||||
|
@ -75,7 +83,7 @@ def run_pipeline():
|
|||
# run only once !
|
||||
if to_create_kb:
|
||||
print("STEP 3a: to_create_kb", datetime.datetime.now())
|
||||
my_kb = kb_creator.create_kb(nlp,
|
||||
kb_1 = kb_creator.create_kb(nlp_1,
|
||||
max_entities_per_alias=MAX_CANDIDATES,
|
||||
min_occ=MIN_PAIR_OCC,
|
||||
entity_def_output=ENTITY_DEFS,
|
||||
|
@ -83,63 +91,66 @@ def run_pipeline():
|
|||
count_input=ENTITY_COUNTS,
|
||||
prior_prob_input=PRIOR_PROB,
|
||||
to_print=False)
|
||||
print("kb entities:", my_kb.get_size_entities())
|
||||
print("kb aliases:", my_kb.get_size_aliases())
|
||||
print("kb entities:", kb_1.get_size_entities())
|
||||
print("kb aliases:", kb_1.get_size_aliases())
|
||||
print()
|
||||
|
||||
print("STEP 3b: write KB", datetime.datetime.now())
|
||||
my_kb.dump(KB_FILE)
|
||||
nlp.vocab.to_disk(VOCAB_DIR)
|
||||
print("STEP 3b: write KB and NLP", datetime.datetime.now())
|
||||
kb_1.dump(KB_FILE)
|
||||
nlp_1.to_disk(NLP_1_DIR)
|
||||
print()
|
||||
|
||||
# STEP 4 : read KB back in from file
|
||||
if to_read_kb:
|
||||
print("STEP 4: to_read_kb", datetime.datetime.now())
|
||||
my_vocab = Vocab()
|
||||
my_vocab.from_disk(VOCAB_DIR)
|
||||
my_kb = KnowledgeBase(vocab=my_vocab, entity_vector_length=64) # TODO entity vectors
|
||||
my_kb.load_bulk(KB_FILE)
|
||||
print("kb entities:", my_kb.get_size_entities())
|
||||
print("kb aliases:", my_kb.get_size_aliases())
|
||||
# my_vocab = Vocab()
|
||||
# my_vocab.from_disk(VOCAB_DIR)
|
||||
# my_kb = KnowledgeBase(vocab=my_vocab, entity_vector_length=64)
|
||||
nlp_2 = spacy.load(NLP_1_DIR)
|
||||
kb_2 = KnowledgeBase(vocab=nlp_2.vocab, entity_vector_length=DESC_WIDTH)
|
||||
kb_2.load_bulk(KB_FILE)
|
||||
print("kb entities:", kb_2.get_size_entities())
|
||||
print("kb aliases:", kb_2.get_size_aliases())
|
||||
print()
|
||||
|
||||
# test KB
|
||||
if to_test_kb:
|
||||
run_el.run_kb_toy_example(kb=my_kb)
|
||||
run_el.run_kb_toy_example(kb=kb_2)
|
||||
print()
|
||||
|
||||
# STEP 5: create a training dataset from WP
|
||||
if create_wp_training:
|
||||
print("STEP 5: create training dataset", datetime.datetime.now())
|
||||
training_set_creator.create_training(kb=my_kb, entity_def_input=ENTITY_DEFS, training_output=TRAINING_DIR)
|
||||
training_set_creator.create_training(kb=kb_2, entity_def_input=ENTITY_DEFS, training_output=TRAINING_DIR)
|
||||
|
||||
# STEP 6: create the entity linking pipe
|
||||
if train_pipe:
|
||||
print("STEP 6: training Entity Linking pipe", datetime.datetime.now())
|
||||
train_limit = 5000
|
||||
dev_limit = 1000
|
||||
train_limit = 10
|
||||
dev_limit = 5
|
||||
print("Training on", train_limit, "articles")
|
||||
print("Dev testing on", dev_limit, "articles")
|
||||
print()
|
||||
|
||||
train_data = training_set_creator.read_training(nlp=nlp,
|
||||
train_data = training_set_creator.read_training(nlp=nlp_2,
|
||||
training_dir=TRAINING_DIR,
|
||||
dev=False,
|
||||
limit=train_limit,
|
||||
to_print=False)
|
||||
|
||||
dev_data = training_set_creator.read_training(nlp=nlp,
|
||||
dev_data = training_set_creator.read_training(nlp=nlp_2,
|
||||
training_dir=TRAINING_DIR,
|
||||
dev=True,
|
||||
limit=dev_limit,
|
||||
to_print=False)
|
||||
|
||||
el_pipe = nlp.create_pipe(name='entity_linker', config={"kb": my_kb, "doc_cutoff": DOC_CHAR_CUTOFF})
|
||||
nlp.add_pipe(el_pipe, last=True)
|
||||
el_pipe = nlp_2.create_pipe(name='entity_linker', config={"doc_cutoff": DOC_CHAR_CUTOFF})
|
||||
el_pipe.set_kb(kb_2)
|
||||
nlp_2.add_pipe(el_pipe, last=True)
|
||||
|
||||
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "entity_linker"]
|
||||
with nlp.disable_pipes(*other_pipes): # only train Entity Linking
|
||||
nlp.begin_training()
|
||||
other_pipes = [pipe for pipe in nlp_2.pipe_names if pipe != "entity_linker"]
|
||||
with nlp_2.disable_pipes(*other_pipes): # only train Entity Linking
|
||||
nlp_2.begin_training()
|
||||
|
||||
for itn in range(EPOCHS):
|
||||
random.shuffle(train_data)
|
||||
|
@ -147,11 +158,11 @@ def run_pipeline():
|
|||
batches = minibatch(train_data, size=compounding(4.0, 128.0, 1.001))
|
||||
batchnr = 0
|
||||
|
||||
with nlp.disable_pipes(*other_pipes):
|
||||
with nlp_2.disable_pipes(*other_pipes):
|
||||
for batch in batches:
|
||||
try:
|
||||
docs, golds = zip(*batch)
|
||||
nlp.update(
|
||||
nlp_2.update(
|
||||
docs,
|
||||
golds,
|
||||
drop=DROPOUT,
|
||||
|
@ -164,40 +175,62 @@ def run_pipeline():
|
|||
losses['entity_linker'] = losses['entity_linker'] / batchnr
|
||||
print("Epoch, train loss", itn, round(losses['entity_linker'], 2))
|
||||
|
||||
print()
|
||||
print("STEP 7: performance measurement of Entity Linking pipe", datetime.datetime.now())
|
||||
print()
|
||||
if measure_performance:
|
||||
print()
|
||||
print("STEP 7: performance measurement of Entity Linking pipe", datetime.datetime.now())
|
||||
print()
|
||||
|
||||
# print(" measuring accuracy 1-1")
|
||||
el_pipe.context_weight = 1
|
||||
el_pipe.prior_weight = 1
|
||||
dev_acc_1_1 = _measure_accuracy(dev_data, el_pipe)
|
||||
train_acc_1_1 = _measure_accuracy(train_data, el_pipe)
|
||||
print("train/dev acc combo:", round(train_acc_1_1, 2), round(dev_acc_1_1, 2))
|
||||
# print(" measuring accuracy 1-1")
|
||||
el_pipe.context_weight = 1
|
||||
el_pipe.prior_weight = 1
|
||||
dev_acc_1_1 = _measure_accuracy(dev_data, el_pipe)
|
||||
train_acc_1_1 = _measure_accuracy(train_data, el_pipe)
|
||||
print("train/dev acc combo:", round(train_acc_1_1, 2), round(dev_acc_1_1, 2))
|
||||
|
||||
# baseline using only prior probabilities
|
||||
el_pipe.context_weight = 0
|
||||
el_pipe.prior_weight = 1
|
||||
dev_acc_0_1 = _measure_accuracy(dev_data, el_pipe)
|
||||
train_acc_0_1 = _measure_accuracy(train_data, el_pipe)
|
||||
print("train/dev acc prior:", round(train_acc_0_1, 2), round(dev_acc_0_1, 2))
|
||||
# baseline using only prior probabilities
|
||||
el_pipe.context_weight = 0
|
||||
el_pipe.prior_weight = 1
|
||||
dev_acc_0_1 = _measure_accuracy(dev_data, el_pipe)
|
||||
train_acc_0_1 = _measure_accuracy(train_data, el_pipe)
|
||||
print("train/dev acc prior:", round(train_acc_0_1, 2), round(dev_acc_0_1, 2))
|
||||
|
||||
# using only context
|
||||
el_pipe.context_weight = 1
|
||||
el_pipe.prior_weight = 0
|
||||
dev_acc_1_0 = _measure_accuracy(dev_data, el_pipe)
|
||||
train_acc_1_0 = _measure_accuracy(train_data, el_pipe)
|
||||
# using only context
|
||||
el_pipe.context_weight = 1
|
||||
el_pipe.prior_weight = 0
|
||||
dev_acc_1_0 = _measure_accuracy(dev_data, el_pipe)
|
||||
train_acc_1_0 = _measure_accuracy(train_data, el_pipe)
|
||||
|
||||
print("train/dev acc context:", round(train_acc_1_0, 2), round(dev_acc_1_0, 2))
|
||||
print()
|
||||
print("train/dev acc context:", round(train_acc_1_0, 2), round(dev_acc_1_0, 2))
|
||||
print()
|
||||
|
||||
if to_test_pipeline:
|
||||
print()
|
||||
print("STEP 8: applying Entity Linking to toy example", datetime.datetime.now())
|
||||
print()
|
||||
run_el_toy_example(kb=my_kb, nlp=nlp)
|
||||
run_el_toy_example(nlp=nlp_2)
|
||||
print()
|
||||
|
||||
if test_nlp_io:
|
||||
print()
|
||||
print("STEP 9: testing NLP IO", datetime.datetime.now())
|
||||
print()
|
||||
print("writing to", NLP_2_DIR)
|
||||
print(" vocab len nlp_2", len(nlp_2.vocab))
|
||||
print(" vocab len kb_2", len(kb_2.vocab))
|
||||
nlp_2.to_disk(NLP_2_DIR)
|
||||
print()
|
||||
print("reading from", NLP_2_DIR)
|
||||
nlp_3 = spacy.load(NLP_2_DIR)
|
||||
print(" vocab len nlp_3", len(nlp_3.vocab))
|
||||
|
||||
for pipe_name, pipe in nlp_3.pipeline:
|
||||
if pipe_name == "entity_linker":
|
||||
print(" vocab len kb_3", len(pipe.kb.vocab))
|
||||
|
||||
print()
|
||||
print("running toy example with NLP 2")
|
||||
run_el_toy_example(nlp=nlp_3)
|
||||
|
||||
print()
|
||||
print("STOP", datetime.datetime.now())
|
||||
|
||||
|
@ -239,7 +272,7 @@ def _measure_accuracy(data, el_pipe):
|
|||
return acc
|
||||
|
||||
|
||||
def run_el_toy_example(nlp, kb):
|
||||
def run_el_toy_example(nlp):
|
||||
text = "In The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, " \
|
||||
"Douglas reminds us to always bring our towel. " \
|
||||
"The main character in Doug's novel is the man Arthur Dent, " \
|
||||
|
@ -261,4 +294,4 @@ def run_el_toy_example(nlp, kb):
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_pipeline()
|
||||
run_pipeline()
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
# cython: profile=True
|
||||
# coding: utf8
|
||||
from collections import OrderedDict
|
||||
from pathlib import Path, WindowsPath
|
||||
|
||||
from cpython.exc cimport PyErr_CheckSignals
|
||||
|
||||
from spacy import util
|
||||
|
@ -389,6 +391,8 @@ cdef class Writer:
|
|||
def __init__(self, object loc):
|
||||
if path.exists(loc):
|
||||
assert not path.isdir(loc), "%s is directory." % loc
|
||||
if isinstance(loc, Path):
|
||||
loc = bytes(loc)
|
||||
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
||||
self._fp = fopen(<char*>bytes_loc, 'wb')
|
||||
assert self._fp != NULL
|
||||
|
@ -431,6 +435,8 @@ cdef class Reader:
|
|||
def __init__(self, object loc):
|
||||
assert path.exists(loc)
|
||||
assert not path.isdir(loc)
|
||||
if isinstance(loc, Path):
|
||||
loc = bytes(loc)
|
||||
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
||||
self._fp = fopen(<char*>bytes_loc, 'rb')
|
||||
if not self._fp:
|
||||
|
|
|
@ -11,6 +11,7 @@ from copy import copy, deepcopy
|
|||
from thinc.neural import Model
|
||||
import srsly
|
||||
|
||||
from spacy.kb import KnowledgeBase
|
||||
from .tokenizer import Tokenizer
|
||||
from .vocab import Vocab
|
||||
from .lemmatizer import Lemmatizer
|
||||
|
@ -809,6 +810,14 @@ class Language(object):
|
|||
# Convert to list here in case exclude is (default) tuple
|
||||
exclude = list(exclude) + ["vocab"]
|
||||
util.from_disk(path, deserializers, exclude)
|
||||
|
||||
# download the KB for the entity linking component - requires the vocab
|
||||
for pipe_name, pipe in self.pipeline:
|
||||
if pipe_name == "entity_linker":
|
||||
kb = KnowledgeBase(vocab=self.vocab, entity_vector_length=pipe.cfg["entity_width"])
|
||||
kb.load_bulk(path / pipe_name / "kb")
|
||||
pipe.set_kb(kb)
|
||||
|
||||
self._path = path
|
||||
return self
|
||||
|
||||
|
|
|
@ -14,6 +14,7 @@ from thinc.misc import LayerNorm
|
|||
from thinc.neural.util import to_categorical
|
||||
from thinc.neural.util import get_array_module
|
||||
|
||||
from spacy.kb import KnowledgeBase
|
||||
from ..tokens.doc cimport Doc
|
||||
from ..syntax.nn_parser cimport Parser
|
||||
from ..syntax.ner cimport BiluoPushDown
|
||||
|
@ -1077,7 +1078,7 @@ class EntityLinker(Pipe):
|
|||
hidden_width = cfg.get("hidden_width", 32)
|
||||
article_width = cfg.get("article_width", 128)
|
||||
sent_width = cfg.get("sent_width", 64)
|
||||
entity_width = cfg["kb"].entity_vector_length
|
||||
entity_width = cfg.get("entity_width") # no default because this needs to correspond with the KB
|
||||
|
||||
article_encoder = build_nel_encoder(in_width=embed_width, hidden_width=hidden_width, end_width=article_width, **cfg)
|
||||
sent_encoder = build_nel_encoder(in_width=embed_width, hidden_width=hidden_width, end_width=sent_width, **cfg)
|
||||
|
@ -1089,34 +1090,41 @@ class EntityLinker(Pipe):
|
|||
return article_encoder, sent_encoder, mention_encoder
|
||||
|
||||
def __init__(self, **cfg):
|
||||
self.article_encoder = True
|
||||
self.sent_encoder = True
|
||||
self.mention_encoder = True
|
||||
self.kb = None
|
||||
self.cfg = dict(cfg)
|
||||
self.kb = self.cfg["kb"]
|
||||
self.doc_cutoff = self.cfg["doc_cutoff"]
|
||||
|
||||
def use_avg_params(self):
|
||||
# Modify the pipe's encoders/models, to use their average parameter values.
|
||||
# TODO: this doesn't work yet because there's no exit method
|
||||
self.article_encoder.use_params(self.sgd_article.averages)
|
||||
self.sent_encoder.use_params(self.sgd_sent.averages)
|
||||
self.mention_encoder.use_params(self.sgd_mention.averages)
|
||||
self.doc_cutoff = self.cfg.get("doc_cutoff", 150)
|
||||
|
||||
def set_kb(self, kb):
|
||||
self.kb = kb
|
||||
|
||||
def require_model(self):
|
||||
# Raise an error if the component's model is not initialized.
|
||||
if getattr(self, "mention_encoder", None) in (None, True, False):
|
||||
raise ValueError(Errors.E109.format(name=self.name))
|
||||
|
||||
def require_kb(self):
|
||||
# Raise an error if the knowledge base is not initialized.
|
||||
if getattr(self, "kb", None) in (None, True, False):
|
||||
# TODO: custom error
|
||||
raise ValueError(Errors.E109.format(name=self.name))
|
||||
|
||||
def begin_training(self, get_gold_tuples=lambda: [], pipeline=None, sgd=None, **kwargs):
|
||||
self.require_kb()
|
||||
self.cfg["entity_width"] = self.kb.entity_vector_length
|
||||
|
||||
if self.mention_encoder is True:
|
||||
self.article_encoder, self.sent_encoder, self.mention_encoder = self.Model(**self.cfg)
|
||||
self.sgd_article = create_default_optimizer(self.article_encoder.ops)
|
||||
self.sgd_sent = create_default_optimizer(self.sent_encoder.ops)
|
||||
self.sgd_mention = create_default_optimizer(self.mention_encoder.ops)
|
||||
self.sgd_article = create_default_optimizer(self.article_encoder.ops)
|
||||
self.sgd_sent = create_default_optimizer(self.sent_encoder.ops)
|
||||
self.sgd_mention = create_default_optimizer(self.mention_encoder.ops)
|
||||
return self.sgd_article
|
||||
|
||||
def update(self, docs, golds, state=None, drop=0.0, sgd=None, losses=None):
|
||||
self.require_model()
|
||||
self.require_kb()
|
||||
|
||||
if len(docs) != len(golds):
|
||||
raise ValueError(Errors.E077.format(value="EL training", n_docs=len(docs),
|
||||
|
@ -1220,6 +1228,7 @@ class EntityLinker(Pipe):
|
|||
|
||||
def predict(self, docs):
|
||||
self.require_model()
|
||||
self.require_kb()
|
||||
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
|
@ -1228,30 +1237,32 @@ class EntityLinker(Pipe):
|
|||
final_kb_ids = list()
|
||||
|
||||
for i, article_doc in enumerate(docs):
|
||||
doc_encoding = self.article_encoder([article_doc])
|
||||
for ent in article_doc.ents:
|
||||
sent_doc = ent.sent.as_doc()
|
||||
sent_encoding = self.sent_encoder([sent_doc])
|
||||
concat_encoding = [list(doc_encoding[0]) + list(sent_encoding[0])]
|
||||
mention_encoding = self.mention_encoder(np.asarray([concat_encoding[0]]))
|
||||
mention_enc_t = np.transpose(mention_encoding)
|
||||
if len(article_doc) > 0:
|
||||
doc_encoding = self.article_encoder([article_doc])
|
||||
for ent in article_doc.ents:
|
||||
sent_doc = ent.sent.as_doc()
|
||||
if len(sent_doc) > 0:
|
||||
sent_encoding = self.sent_encoder([sent_doc])
|
||||
concat_encoding = [list(doc_encoding[0]) + list(sent_encoding[0])]
|
||||
mention_encoding = self.mention_encoder(np.asarray([concat_encoding[0]]))
|
||||
mention_enc_t = np.transpose(mention_encoding)
|
||||
|
||||
candidates = self.kb.get_candidates(ent.text)
|
||||
if candidates:
|
||||
scores = list()
|
||||
for c in candidates:
|
||||
prior_prob = c.prior_prob * self.prior_weight
|
||||
kb_id = c.entity_
|
||||
entity_encoding = c.entity_vector
|
||||
sim = cosine(np.asarray([entity_encoding]), mention_enc_t) * self.context_weight
|
||||
score = prior_prob + sim - (prior_prob*sim) # put weights on the different factors ?
|
||||
scores.append(score)
|
||||
candidates = self.kb.get_candidates(ent.text)
|
||||
if candidates:
|
||||
scores = list()
|
||||
for c in candidates:
|
||||
prior_prob = c.prior_prob * self.prior_weight
|
||||
kb_id = c.entity_
|
||||
entity_encoding = c.entity_vector
|
||||
sim = cosine(np.asarray([entity_encoding]), mention_enc_t) * self.context_weight
|
||||
score = prior_prob + sim - (prior_prob*sim) # put weights on the different factors ?
|
||||
scores.append(score)
|
||||
|
||||
# TODO: thresholding
|
||||
best_index = scores.index(max(scores))
|
||||
best_candidate = candidates[best_index]
|
||||
final_entities.append(ent)
|
||||
final_kb_ids.append(best_candidate.entity_)
|
||||
# TODO: thresholding
|
||||
best_index = scores.index(max(scores))
|
||||
best_candidate = candidates[best_index]
|
||||
final_entities.append(ent)
|
||||
final_kb_ids.append(best_candidate.entity_)
|
||||
|
||||
return final_entities, final_kb_ids
|
||||
|
||||
|
@ -1260,6 +1271,80 @@ class EntityLinker(Pipe):
|
|||
for token in entity:
|
||||
token.ent_kb_id_ = kb_id
|
||||
|
||||
def to_bytes(self, exclude=tuple(), **kwargs):
|
||||
"""Serialize the pipe to a bytestring.
|
||||
|
||||
exclude (list): String names of serialization fields to exclude.
|
||||
RETURNS (bytes): The serialized object.
|
||||
"""
|
||||
serialize = OrderedDict()
|
||||
serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
|
||||
serialize["kb"] = self.kb.to_bytes # TODO
|
||||
if self.mention_encoder not in (True, False, None):
|
||||
serialize["article_encoder"] = self.article_encoder.to_bytes
|
||||
serialize["sent_encoder"] = self.sent_encoder.to_bytes
|
||||
serialize["mention_encoder"] = self.mention_encoder.to_bytes
|
||||
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
||||
return util.to_bytes(serialize, exclude)
|
||||
|
||||
def from_bytes(self, bytes_data, exclude=tuple(), **kwargs):
|
||||
"""Load the pipe from a bytestring."""
|
||||
deserialize = OrderedDict()
|
||||
deserialize["cfg"] = lambda b: self.cfg.update(srsly.json_loads(b))
|
||||
deserialize["kb"] = lambda b: self.kb.from_bytes(b) # TODO
|
||||
deserialize["article_encoder"] = lambda b: self.article_encoder.from_bytes(b)
|
||||
deserialize["sent_encoder"] = lambda b: self.sent_encoder.from_bytes(b)
|
||||
deserialize["mention_encoder"] = lambda b: self.mention_encoder.from_bytes(b)
|
||||
exclude = util.get_serialization_exclude(deserialize, exclude, kwargs)
|
||||
util.from_bytes(bytes_data, deserialize, exclude)
|
||||
return self
|
||||
|
||||
def to_disk(self, path, exclude=tuple(), **kwargs):
|
||||
"""Serialize the pipe to disk."""
|
||||
serialize = OrderedDict()
|
||||
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
|
||||
serialize["kb"] = lambda p: self.kb.dump(p)
|
||||
if self.mention_encoder not in (None, True, False):
|
||||
serialize["article_encoder"] = lambda p: p.open("wb").write(self.article_encoder.to_bytes())
|
||||
serialize["sent_encoder"] = lambda p: p.open("wb").write(self.sent_encoder.to_bytes())
|
||||
serialize["mention_encoder"] = lambda p: p.open("wb").write(self.mention_encoder.to_bytes())
|
||||
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
||||
util.to_disk(path, serialize, exclude)
|
||||
|
||||
def from_disk(self, path, exclude=tuple(), **kwargs):
|
||||
"""Load the pipe from disk."""
|
||||
def load_article_encoder(p):
|
||||
if self.article_encoder is True:
|
||||
self.article_encoder, _, _ = self.Model(**self.cfg)
|
||||
self.article_encoder.from_bytes(p.open("rb").read())
|
||||
|
||||
def load_sent_encoder(p):
|
||||
if self.sent_encoder is True:
|
||||
_, self.sent_encoder, _ = self.Model(**self.cfg)
|
||||
self.sent_encoder.from_bytes(p.open("rb").read())
|
||||
|
||||
def load_mention_encoder(p):
|
||||
if self.mention_encoder is True:
|
||||
_, _, self.mention_encoder = self.Model(**self.cfg)
|
||||
self.mention_encoder.from_bytes(p.open("rb").read())
|
||||
|
||||
deserialize = OrderedDict()
|
||||
deserialize["cfg"] = lambda p: self.cfg.update(_load_cfg(p))
|
||||
deserialize["article_encoder"] = load_article_encoder
|
||||
deserialize["sent_encoder"] = load_sent_encoder
|
||||
deserialize["mention_encoder"] = load_mention_encoder
|
||||
exclude = util.get_serialization_exclude(deserialize, exclude, kwargs)
|
||||
util.from_disk(path, deserialize, exclude)
|
||||
return self
|
||||
|
||||
def rehearse(self, docs, sgd=None, losses=None, **config):
|
||||
# TODO
|
||||
pass
|
||||
|
||||
def add_label(self, label):
|
||||
pass
|
||||
|
||||
|
||||
class Sentencizer(object):
|
||||
"""Segment the Doc into sentences using a rule-based strategy.
|
||||
|
||||
|
|
Loading…
Reference in New Issue