diff --git a/spacy/_ml.pyx b/spacy/_ml.pyx index be647c2dd..df66a1791 100644 --- a/spacy/_ml.pyx +++ b/spacy/_ml.pyx @@ -10,6 +10,7 @@ import cython import numpy.random from thinc.features cimport Feature, count_feats +from thinc.api cimport Example cdef int arg_max(const weight_t* scores, const int n_classes) nogil: @@ -23,6 +24,30 @@ cdef int arg_max(const weight_t* scores, const int n_classes) nogil: return best +cdef int arg_max_if_true(const weight_t* scores, const bint* is_valid, + const int n_classes) nogil: + cdef int i + cdef int best = 0 + cdef weight_t mode = -900000 + for i in range(n_classes): + if is_valid[i] and scores[i] > mode: + mode = scores[i] + best = i + return best + + +cdef int arg_max_if_zero(const weight_t* scores, const int* costs, + const int n_classes) nogil: + cdef int i + cdef int best = 0 + cdef weight_t mode = -900000 + for i in range(n_classes): + if costs[i] == 0 and scores[i] > mode: + mode = scores[i] + best = i + return best + + cdef class Model: def __init__(self, n_classes, templates, model_loc=None): if model_loc is not None and path.isdir(model_loc): @@ -34,6 +59,17 @@ cdef class Model: if self.model_loc and path.exists(self.model_loc): self._model.load(self.model_loc, freq_thresh=0) + def predict(self, Example eg): + self.set_scores(eg.scores, eg.atoms) + eg.guess = arg_max_if_true(eg.scores, eg.is_valid, self.n_classes) + + def train(self, Example eg): + self.set_scores(eg.scores, eg.atoms) + eg.guess = arg_max_if_true(eg.scores, eg.is_valid, self.n_classes) + eg.best = arg_max_if_zero(eg.scores, eg.costs, self.n_classes) + eg.cost = eg.costs[eg.guess] + self.update(eg.atoms, eg.guess, eg.best, eg.cost) + cdef const weight_t* score(self, atom_t* context) except NULL: cdef int n_feats feats = self._extractor.get_feats(context, &n_feats) diff --git a/spacy/syntax/arc_eager.pyx b/spacy/syntax/arc_eager.pyx index 29e62cb4e..a83e19ec2 100644 --- a/spacy/syntax/arc_eager.pyx +++ b/spacy/syntax/arc_eager.pyx @@ -398,7 +398,8 @@ cdef class ArcEager(TransitionSystem): n_valid += output[i] assert n_valid >= 1 - cdef int set_costs(self, int* output, StateClass stcls, GoldParse gold) except -1: + cdef int set_costs(self, bint* is_valid, int* costs, + StateClass stcls, GoldParse gold) except -1: cdef int i, move, label cdef label_cost_func_t[N_MOVES] label_cost_funcs cdef move_cost_func_t[N_MOVES] move_cost_funcs @@ -423,30 +424,14 @@ cdef class ArcEager(TransitionSystem): n_gold = 0 for i in range(self.n_moves): if self.c[i].is_valid(stcls, self.c[i].label): + is_valid[i] = True move = self.c[i].move label = self.c[i].label if move_costs[move] == -1: move_costs[move] = move_cost_funcs[move](stcls, &gold.c) - output[i] = move_costs[move] + label_cost_funcs[move](stcls, &gold.c, label) - n_gold += output[i] == 0 + costs[i] = move_costs[move] + label_cost_funcs[move](stcls, &gold.c, label) + n_gold += costs[i] == 0 else: - output[i] = 9000 + is_valid[i] = False + costs[i] = 9000 assert n_gold >= 1 - - cdef Transition best_valid(self, const weight_t* scores, StateClass stcls) except *: - cdef bint[N_MOVES] is_valid - is_valid[SHIFT] = Shift.is_valid(stcls, -1) - is_valid[REDUCE] = Reduce.is_valid(stcls, -1) - is_valid[LEFT] = LeftArc.is_valid(stcls, -1) - is_valid[RIGHT] = RightArc.is_valid(stcls, -1) - is_valid[BREAK] = Break.is_valid(stcls, -1) - cdef Transition best - cdef weight_t score = MIN_SCORE - cdef int i - for i in range(self.n_moves): - if scores[i] > score and is_valid[self.c[i].move]: - best = self.c[i] - score = scores[i] - assert best.clas < self.n_moves - assert score > MIN_SCORE, (stcls.stack_depth(), stcls.buffer_length(), stcls.is_final(), stcls._b_i, stcls.length) - return best diff --git a/spacy/syntax/ner.pyx b/spacy/syntax/ner.pyx index 4a47a20a8..b145df7ac 100644 --- a/spacy/syntax/ner.pyx +++ b/spacy/syntax/ner.pyx @@ -128,27 +128,6 @@ cdef class BiluoPushDown(TransitionSystem): raise Exception(move) return t - cdef Transition best_valid(self, const weight_t* scores, StateClass stcls) except *: - cdef int best = -1 - cdef weight_t score = -90000 - cdef const Transition* m - cdef int i - for i in range(self.n_moves): - m = &self.c[i] - if m.is_valid(stcls, m.label) and scores[i] > score: - best = i - score = scores[i] - assert best >= 0 - cdef Transition t = self.c[best] - t.score = score - return t - - cdef int set_valid(self, bint* output, StateClass stcls) except -1: - cdef int i - for i in range(self.n_moves): - m = &self.c[i] - output[i] = m.is_valid(stcls, m.label) - cdef class Missing: @staticmethod diff --git a/spacy/syntax/parser.pxd b/spacy/syntax/parser.pxd index 103ff9c02..11ac6bbb8 100644 --- a/spacy/syntax/parser.pxd +++ b/spacy/syntax/parser.pxd @@ -11,6 +11,3 @@ cdef class Parser: cdef readonly object cfg cdef readonly Model model cdef readonly TransitionSystem moves - - cdef int _greedy_parse(self, Tokens tokens) except -1 - cdef int _beam_parse(self, Tokens tokens) except -1 diff --git a/spacy/syntax/parser.pyx b/spacy/syntax/parser.pyx index e36d10a38..2f6c3cd98 100644 --- a/spacy/syntax/parser.pyx +++ b/spacy/syntax/parser.pyx @@ -19,17 +19,10 @@ from cymem.cymem cimport Pool, Address from murmurhash.mrmr cimport hash64 from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t - from util import Config -from thinc.features cimport Extractor -from thinc.features cimport Feature -from thinc.features cimport count_feats +from thinc.api cimport Example -from thinc.learner cimport LinearModel - -from thinc.search cimport Beam -from thinc.search cimport MaxViolation from ..tokens cimport Tokens, TokenC from ..strings cimport StringStore @@ -72,35 +65,86 @@ cdef class Parser: self.model = Model(self.moves.n_moves, templates, model_dir) def __call__(self, Tokens tokens): - if self.cfg.get('beam_width', 1) < 1: - self._greedy_parse(tokens) - else: - self._beam_parse(tokens) + cdef StateClass stcls = StateClass.init(tokens.data, tokens.length) + self.moves.initialize_state(stcls) + + cdef Example eg = Example(self.model.n_classes, CONTEXT_SIZE) + while not stcls.is_final(): + eg.wipe() + fill_context(eg.atoms, stcls) + self.moves.set_valid(eg.is_valid, stcls) + + self.model.predict(eg) + + self.moves.c[eg.guess].do(stcls, self.moves.c[eg.guess].label) + self.moves.finalize_state(stcls) + tokens.set_parse(stcls._sent) def train(self, Tokens tokens, GoldParse gold): self.moves.preprocess_gold(gold) - if self.cfg.beam_width < 1: - return self._greedy_train(tokens, gold) - else: - return self._beam_train(tokens, gold) - - cdef int _greedy_parse(self, Tokens tokens) except -1: - cdef atom_t[CONTEXT_SIZE] context - cdef int n_feats - cdef Pool mem = Pool() cdef StateClass stcls = StateClass.init(tokens.data, tokens.length) self.moves.initialize_state(stcls) - cdef Transition guess - words = [w.orth_ for w in tokens] + cdef Example eg = Example(self.model.n_classes, CONTEXT_SIZE) + cdef int cost = 0 while not stcls.is_final(): - fill_context(context, stcls) - scores = self.model.score(context) - guess = self.moves.best_valid(scores, stcls) - #print self.moves.move_name(guess.move, guess.label), stcls.print_state(words) - guess.do(stcls, guess.label) - assert stcls._s_i >= 0 - self.moves.finalize_state(stcls) - tokens.set_parse(stcls._sent) + eg.wipe() + fill_context(eg.atoms, stcls) + self.moves.set_costs(eg.is_valid, eg.costs, stcls, gold) + + self.model.train(eg) + + self.moves.c[eg.guess].do(stcls, self.moves.c[eg.guess].label) + cost += eg.cost + return cost + + +# These are passed as callbacks to thinc.search.Beam +""" +cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1: + dest = _dest + src = _src + moves = _moves + dest.clone(src) + moves[clas].do(dest, moves[clas].label) + + +cdef void* _init_state(Pool mem, int length, void* tokens) except NULL: + cdef StateClass st = StateClass.init(tokens, length) + st.fast_forward() + Py_INCREF(st) + return st + + +cdef int _check_final_state(void* _state, void* extra_args) except -1: + return (_state).is_final() + + +def _cleanup(Beam beam): + for i in range(beam.width): + Py_XDECREF(beam._states[i].content) + Py_XDECREF(beam._parents[i].content) + +cdef hash_t _hash_state(void* _state, void* _) except 0: + return _state + + #state = _state + #cdef atom_t[10] rep + + #rep[0] = state.stack[0] if state.stack_len >= 1 else 0 + #rep[1] = state.stack[-1] if state.stack_len >= 2 else 0 + #rep[2] = state.stack[-2] if state.stack_len >= 3 else 0 + #rep[3] = state.i + #rep[4] = state.sent[state.stack[0]].l_kids if state.stack_len >= 1 else 0 + #rep[5] = state.sent[state.stack[0]].r_kids if state.stack_len >= 1 else 0 + #rep[6] = state.sent[state.stack[0]].dep if state.stack_len >= 1 else 0 + #rep[7] = state.sent[state.stack[-1]].dep if state.stack_len >= 2 else 0 + #if get_left(state, get_n0(state), 1) != NULL: + # rep[8] = get_left(state, get_n0(state), 1).dep + #else: + # rep[8] = 0 + #rep[9] = state.sent[state.i].l_kids + #return hash64(rep, sizeof(atom_t) * 10, 0) + cdef int _beam_parse(self, Tokens tokens) except -1: cdef Beam beam = Beam(self.moves.n_moves, self.cfg.beam_width) @@ -114,30 +158,6 @@ cdef class Parser: tokens.set_parse(state._sent) _cleanup(beam) - def _greedy_train(self, Tokens tokens, GoldParse gold): - cdef Pool mem = Pool() - cdef StateClass stcls = StateClass.init(tokens.data, tokens.length) - self.moves.initialize_state(stcls) - - cdef int cost - cdef const Feature* feats - cdef const weight_t* scores - cdef Transition guess - cdef Transition best - cdef atom_t[CONTEXT_SIZE] context - loss = 0 - words = [w.orth_ for w in tokens] - history = [] - while not stcls.is_final(): - fill_context(context, stcls) - scores = self.model.score(context) - guess = self.moves.best_valid(scores, stcls) - best = self.moves.best_gold(scores, stcls, gold) - cost = guess.get_cost(stcls, &gold.c, guess.label) - self.model.update(context, guess.clas, best.clas, cost) - guess.do(stcls, guess.label) - loss += cost - return loss def _beam_train(self, Tokens tokens, GoldParse gold_parse): cdef Beam pred = Beam(self.moves.n_moves, self.cfg.beam_width) @@ -200,50 +220,4 @@ cdef class Parser: count_feats(counts[clas], feats, n_feats, inc) self.moves.c[clas].do(stcls, self.moves.c[clas].label) - -# These are passed as callbacks to thinc.search.Beam - -cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1: - dest = _dest - src = _src - moves = _moves - dest.clone(src) - moves[clas].do(dest, moves[clas].label) - - -cdef void* _init_state(Pool mem, int length, void* tokens) except NULL: - cdef StateClass st = StateClass.init(tokens, length) - st.fast_forward() - Py_INCREF(st) - return st - - -cdef int _check_final_state(void* _state, void* extra_args) except -1: - return (_state).is_final() - - -def _cleanup(Beam beam): - for i in range(beam.width): - Py_XDECREF(beam._states[i].content) - Py_XDECREF(beam._parents[i].content) - -cdef hash_t _hash_state(void* _state, void* _) except 0: - return _state - - #state = _state - #cdef atom_t[10] rep - - #rep[0] = state.stack[0] if state.stack_len >= 1 else 0 - #rep[1] = state.stack[-1] if state.stack_len >= 2 else 0 - #rep[2] = state.stack[-2] if state.stack_len >= 3 else 0 - #rep[3] = state.i - #rep[4] = state.sent[state.stack[0]].l_kids if state.stack_len >= 1 else 0 - #rep[5] = state.sent[state.stack[0]].r_kids if state.stack_len >= 1 else 0 - #rep[6] = state.sent[state.stack[0]].dep if state.stack_len >= 1 else 0 - #rep[7] = state.sent[state.stack[-1]].dep if state.stack_len >= 2 else 0 - #if get_left(state, get_n0(state), 1) != NULL: - # rep[8] = get_left(state, get_n0(state), 1).dep - #else: - # rep[8] = 0 - #rep[9] = state.sent[state.i].l_kids - #return hash64(rep, sizeof(atom_t) * 10, 0) +""" diff --git a/spacy/syntax/transition_system.pxd b/spacy/syntax/transition_system.pxd index d9bd2b3e6..35f0ada30 100644 --- a/spacy/syntax/transition_system.pxd +++ b/spacy/syntax/transition_system.pxd @@ -46,9 +46,5 @@ cdef class TransitionSystem: cdef int set_valid(self, bint* output, StateClass state) except -1 - cdef int set_costs(self, int* output, StateClass state, GoldParse gold) except -1 - - cdef Transition best_valid(self, const weight_t* scores, StateClass stcls) except * - - cdef Transition best_gold(self, const weight_t* scores, StateClass state, - GoldParse gold) except * + cdef int set_costs(self, bint* is_valid, int* costs, + StateClass state, GoldParse gold) except -1 diff --git a/spacy/syntax/transition_system.pyx b/spacy/syntax/transition_system.pyx index 927498cba..b13c75ba3 100644 --- a/spacy/syntax/transition_system.pyx +++ b/spacy/syntax/transition_system.pyx @@ -43,30 +43,17 @@ cdef class TransitionSystem: cdef Transition init_transition(self, int clas, int move, int label) except *: raise NotImplementedError - cdef Transition best_valid(self, const weight_t* scores, StateClass s) except *: - raise NotImplementedError - - cdef int set_valid(self, bint* output, StateClass state) except -1: - raise NotImplementedError - - cdef int set_costs(self, int* output, StateClass stcls, GoldParse gold) except -1: + cdef int set_valid(self, bint* is_valid, StateClass stcls) except -1: cdef int i for i in range(self.n_moves): - if self.c[i].is_valid(stcls, self.c[i].label): - output[i] = self.c[i].get_cost(stcls, &gold.c, self.c[i].label) + is_valid[i] = self.c[i].is_valid(stcls, self.c[i].label) + + cdef int set_costs(self, bint* is_valid, int* costs, + StateClass stcls, GoldParse gold) except -1: + cdef int i + self.set_valid(is_valid, stcls) + for i in range(self.n_moves): + if is_valid[i]: + costs[i] = self.c[i].get_cost(stcls, &gold.c, self.c[i].label) else: - output[i] = 9000 - - cdef Transition best_gold(self, const weight_t* scores, StateClass stcls, - GoldParse gold) except *: - cdef Transition best - cdef weight_t score = MIN_SCORE - cdef int i - for i in range(self.n_moves): - if self.c[i].is_valid(stcls, self.c[i].label): - cost = self.c[i].get_cost(stcls, &gold.c, self.c[i].label) - if scores[i] > score and cost == 0: - best = self.c[i] - score = scores[i] - assert score > MIN_SCORE - return best + costs[i] = 9000