diff --git a/spacy/syntax/_parser_model.pxd b/spacy/syntax/_parser_model.pxd index 38f2f0e4c..75870ef2f 100644 --- a/spacy/syntax/_parser_model.pxd +++ b/spacy/syntax/_parser_model.pxd @@ -19,12 +19,10 @@ cdef struct WeightsC: const float* feat_bias const float* hidden_bias const float* hidden_weights - const float* vectors cdef struct ActivationsC: int* token_ids - float* vectors float* unmaxed float* scores float* hiddens diff --git a/spacy/syntax/_parser_model.pyx b/spacy/syntax/_parser_model.pyx index 962461417..a74878981 100644 --- a/spacy/syntax/_parser_model.pyx +++ b/spacy/syntax/_parser_model.pyx @@ -50,8 +50,6 @@ cdef WeightsC get_c_weights(model) except *: cdef np.ndarray vec2scores_b = model.vec2scores.b output.hidden_weights = vec2scores_W.data output.hidden_bias = vec2scores_b.data - cdef np.ndarray tokvecs = model.tokvecs - output.vectors = tokvecs.data return output @@ -72,7 +70,6 @@ cdef void resize_activations(ActivationsC* A, SizesC n) nogil: return if A._max_size == 0: A.token_ids = calloc(n.states * n.feats, sizeof(A.token_ids[0])) - A.vectors = calloc(n.states * n.embed_width, sizeof(A.vectors[0])) A.scores = calloc(n.states * n.classes, sizeof(A.scores[0])) A.unmaxed = calloc(n.states * n.hiddens * n.pieces, sizeof(A.unmaxed[0])) A.hiddens = calloc(n.states * n.hiddens, sizeof(A.hiddens[0])) @@ -81,8 +78,6 @@ cdef void resize_activations(ActivationsC* A, SizesC n) nogil: else: A.token_ids = realloc(A.token_ids, n.states * n.feats * sizeof(A.token_ids[0])) - A.vectors = realloc(A.vectors, - n.states * n.embed_width * sizeof(A.vectors[0])) A.scores = realloc(A.scores, n.states * n.classes * sizeof(A.scores[0])) A.unmaxed = realloc(A.unmaxed, @@ -242,7 +237,7 @@ class ParserStepModel(Model): def begin_update(self, states, drop=0.): token_ids = self.get_token_ids(states) vector, get_d_tokvecs = self.state2vec.begin_update(token_ids, drop=0.0) - mask = self.ops.get_dropout_mask(vector.shape, drop) + mask = self.vec2scores.ops.get_dropout_mask(vector.shape, drop) if mask is not None: vector *= mask scores, get_d_vector = self.vec2scores.begin_update(vector, drop=drop) @@ -251,7 +246,7 @@ class ParserStepModel(Model): d_vector = get_d_vector(d_scores, sgd=sgd) if mask is not None: d_vector *= mask - if isinstance(self.ops, CupyOps) \ + if isinstance(self.state2vec.ops, CupyOps) \ and not isinstance(token_ids, self.state2vec.ops.xp.ndarray): # Move token_ids and d_vector to GPU, asynchronously self.backprops.append((