mirror of https://github.com/explosion/spaCy.git
Clean up spacy.cli.train
This commit is contained in:
parent
b9cea9cd93
commit
702fe74a4d
|
@ -14,7 +14,7 @@ from timeit import default_timer as timer
|
|||
from ..tokens.doc import Doc
|
||||
from ..scorer import Scorer
|
||||
from ..gold import GoldParse, merge_sents
|
||||
from ..gold import GoldCorpus
|
||||
from ..gold import GoldCorpus, minibatch
|
||||
from ..util import prints
|
||||
from .. import util
|
||||
from .. import displacy
|
||||
|
@ -53,44 +53,38 @@ def train(_, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
|
|||
if no_parser and 'dependencies' in pipeline: pipeline.remove('dependencies')
|
||||
if no_entities and 'entities' in pipeline: pipeline.remove('entities')
|
||||
|
||||
# Take dropout and batch size as generators of values -- dropout
|
||||
# starts high and decays sharply, to force the optimizer to explore.
|
||||
# Batch size starts at 1 and grows, so that we make updates quickly
|
||||
# at the beginning of training.
|
||||
dropout_rates = util.decaying(util.env_opt('dropout_from', 0.0),
|
||||
util.env_opt('dropout_to', 0.0),
|
||||
util.env_opt('dropout_decay', 0.0))
|
||||
batch_sizes = util.compounding(util.env_opt('batch_from', 1),
|
||||
util.env_opt('batch_to', 64),
|
||||
util.env_opt('batch_compound', 1.001))
|
||||
|
||||
nlp = lang_class(pipeline=pipeline)
|
||||
corpus = GoldCorpus(train_path, dev_path, limit=n_sents)
|
||||
|
||||
dropout = util.env_opt('dropout', 0.0)
|
||||
dropout_decay = util.env_opt('dropout_decay', 0.0)
|
||||
orig_dropout = dropout
|
||||
n_train_docs = corpus.count_train()
|
||||
|
||||
optimizer = nlp.begin_training(lambda: corpus.train_tuples, use_gpu=use_gpu)
|
||||
n_train_docs = corpus.count_train()
|
||||
batch_size = float(util.env_opt('min_batch_size', 4))
|
||||
max_batch_size = util.env_opt('max_batch_size', 64)
|
||||
batch_accel = util.env_opt('batch_accel', 1.001)
|
||||
|
||||
print("Itn.\tDep. Loss\tUAS\tNER P.\tNER R.\tNER F.\tTag %\tToken %")
|
||||
for i in range(n_iter):
|
||||
with tqdm.tqdm(total=n_train_docs) as pbar:
|
||||
train_docs = corpus.train_docs(nlp, shuffle=i, projectivize=True,
|
||||
gold_preproc=False)
|
||||
with tqdm.tqdm(total=corpus.count_train()) as pbar:
|
||||
train_docs = corpus.train_docs(nlp, projectivize=True,
|
||||
gold_preproc=False, shuffle=i)
|
||||
losses = {}
|
||||
idx = 0
|
||||
while idx < n_train_docs:
|
||||
batch = list(cytoolz.take(int(batch_size), train_docs))
|
||||
if not batch:
|
||||
break
|
||||
for batch in minibatch(train_docs, size=batch_sizes):
|
||||
docs, golds = zip(*batch)
|
||||
nlp.update(docs, golds, drop=dropout, sgd=optimizer, losses=losses)
|
||||
nlp.update(docs, golds, sgd=optimizer,
|
||||
drop=next(dropout_rates), losses=losses)
|
||||
pbar.update(len(docs))
|
||||
idx += len(docs)
|
||||
batch_size *= batch_accel
|
||||
batch_size = min(batch_size, max_batch_size)
|
||||
dropout = linear_decay(orig_dropout, dropout_decay, i*n_train_docs+idx)
|
||||
|
||||
with nlp.use_params(optimizer.averages):
|
||||
start = timer()
|
||||
scorer = nlp.evaluate(corpus.dev_docs(nlp, gold_preproc=False))
|
||||
end = timer()
|
||||
n_words = scorer.tokens.tp + scorer.tokens.fn
|
||||
assert n_words != 0
|
||||
wps = n_words / (end-start)
|
||||
print_progress(i, losses, scorer.scores, wps=wps)
|
||||
print_progress(i, losses, scorer.scores)
|
||||
with (output_path / 'model.bin').open('wb') as file_:
|
||||
with nlp.use_params(optimizer.averages):
|
||||
dill.dump(nlp, file_, -1)
|
||||
|
@ -118,7 +112,6 @@ def print_progress(itn, losses, dev_scores, wps=0.0):
|
|||
tpl = '\t'.join((
|
||||
'{:d}',
|
||||
'{dep_loss:.3f}',
|
||||
'{tag_loss:.3f}',
|
||||
'{uas:.3f}',
|
||||
'{ents_p:.3f}',
|
||||
'{ents_r:.3f}',
|
||||
|
|
Loading…
Reference in New Issue