mirror of https://github.com/explosion/spaCy.git
Merge pull request #12784 from explosion/master
Merge `master` into `develop`
This commit is contained in:
commit
6f3a71999e
|
@ -1,118 +0,0 @@
|
|||
parameters:
|
||||
python_version: ''
|
||||
architecture: ''
|
||||
prefix: ''
|
||||
gpu: false
|
||||
num_build_jobs: 1
|
||||
|
||||
steps:
|
||||
- task: UsePythonVersion@0
|
||||
inputs:
|
||||
versionSpec: ${{ parameters.python_version }}
|
||||
architecture: ${{ parameters.architecture }}
|
||||
allowUnstable: true
|
||||
|
||||
- bash: |
|
||||
echo "##vso[task.setvariable variable=python_version]${{ parameters.python_version }}"
|
||||
displayName: 'Set variables'
|
||||
|
||||
- script: |
|
||||
${{ parameters.prefix }} python -m pip install -U pip setuptools
|
||||
${{ parameters.prefix }} python -m pip install -U -r requirements.txt
|
||||
displayName: "Install dependencies"
|
||||
|
||||
- script: |
|
||||
${{ parameters.prefix }} python setup.py build_ext --inplace -j ${{ parameters.num_build_jobs }}
|
||||
${{ parameters.prefix }} python setup.py sdist --formats=gztar
|
||||
displayName: "Compile and build sdist"
|
||||
|
||||
- script: python -m mypy spacy
|
||||
displayName: 'Run mypy'
|
||||
condition: ne(variables['python_version'], '3.6')
|
||||
|
||||
- task: DeleteFiles@1
|
||||
inputs:
|
||||
contents: "spacy"
|
||||
displayName: "Delete source directory"
|
||||
|
||||
- script: |
|
||||
${{ parameters.prefix }} python -m pip freeze --exclude torch --exclude cupy-cuda110 > installed.txt
|
||||
${{ parameters.prefix }} python -m pip uninstall -y -r installed.txt
|
||||
displayName: "Uninstall all packages"
|
||||
|
||||
- bash: |
|
||||
${{ parameters.prefix }} SDIST=$(python -c "import os;print(os.listdir('./dist')[-1])" 2>&1)
|
||||
${{ parameters.prefix }} SPACY_NUM_BUILD_JOBS=2 python -m pip install dist/$SDIST
|
||||
displayName: "Install from sdist"
|
||||
|
||||
- script: |
|
||||
${{ parameters.prefix }} python -m pip install -U -r requirements.txt
|
||||
displayName: "Install test requirements"
|
||||
|
||||
- script: |
|
||||
${{ parameters.prefix }} python -m pip install -U cupy-cuda110 -f https://github.com/cupy/cupy/releases/v9.0.0
|
||||
${{ parameters.prefix }} python -m pip install "torch==1.7.1+cu110" -f https://download.pytorch.org/whl/torch_stable.html
|
||||
displayName: "Install GPU requirements"
|
||||
condition: eq(${{ parameters.gpu }}, true)
|
||||
|
||||
- script: |
|
||||
${{ parameters.prefix }} python -m pytest --pyargs spacy -W error
|
||||
displayName: "Run CPU tests"
|
||||
condition: eq(${{ parameters.gpu }}, false)
|
||||
|
||||
- script: |
|
||||
${{ parameters.prefix }} python -m pytest --pyargs spacy -W error -p spacy.tests.enable_gpu
|
||||
displayName: "Run GPU tests"
|
||||
condition: eq(${{ parameters.gpu }}, true)
|
||||
|
||||
- script: |
|
||||
python -m spacy download ca_core_news_sm
|
||||
python -m spacy download ca_core_news_md
|
||||
python -c "import spacy; nlp=spacy.load('ca_core_news_sm'); doc=nlp('test')"
|
||||
displayName: 'Test download CLI'
|
||||
condition: eq(variables['python_version'], '3.8')
|
||||
|
||||
- script: |
|
||||
python -m spacy convert extra/example_data/ner_example_data/ner-token-per-line-conll2003.json .
|
||||
displayName: 'Test convert CLI'
|
||||
condition: eq(variables['python_version'], '3.8')
|
||||
|
||||
- script: |
|
||||
python -m spacy init config -p ner -l ca ner.cfg
|
||||
python -m spacy debug config ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy
|
||||
displayName: 'Test debug config CLI'
|
||||
condition: eq(variables['python_version'], '3.8')
|
||||
|
||||
- script: |
|
||||
# will have errors due to sparse data, check for summary in output
|
||||
python -m spacy debug data ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy | grep -q Summary
|
||||
displayName: 'Test debug data CLI'
|
||||
condition: eq(variables['python_version'], '3.8')
|
||||
|
||||
- script: |
|
||||
python -m spacy train ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy --training.max_steps 10 --gpu-id -1
|
||||
displayName: 'Test train CLI'
|
||||
condition: eq(variables['python_version'], '3.8')
|
||||
|
||||
- script: |
|
||||
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')"
|
||||
PYTHONWARNINGS="error,ignore::DeprecationWarning" python -m spacy assemble ner_source_sm.cfg output_dir
|
||||
displayName: 'Test assemble CLI'
|
||||
condition: eq(variables['python_version'], '3.8')
|
||||
|
||||
- script: |
|
||||
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_md'}; config.to_disk('ner_source_md.cfg')"
|
||||
python -m spacy assemble ner_source_md.cfg output_dir 2>&1 | grep -q W113
|
||||
displayName: 'Test assemble CLI vectors warning'
|
||||
condition: eq(variables['python_version'], '3.8')
|
||||
|
||||
- script: |
|
||||
python .github/validate_universe_json.py website/meta/universe.json
|
||||
displayName: 'Test website/meta/universe.json'
|
||||
condition: eq(variables['python_version'], '3.8')
|
||||
|
||||
- script: |
|
||||
${{ parameters.prefix }} python -m pip install --pre thinc-apple-ops
|
||||
${{ parameters.prefix }} python -m pytest --pyargs spacy
|
||||
displayName: "Run CPU tests with thinc-apple-ops"
|
||||
condition: and(startsWith(variables['imageName'], 'macos'), eq(variables['python.version'], '3.10'))
|
|
@ -1,44 +0,0 @@
|
|||
# GitHub Action that uses Black to reformat all Python code and submits a PR
|
||||
# in regular intervals. Inspired by: https://github.com/cclauss/autoblack
|
||||
|
||||
name: autoblack
|
||||
on:
|
||||
workflow_dispatch: # allow manual trigger
|
||||
schedule:
|
||||
- cron: '0 8 * * 5' # every Friday at 8am UTC
|
||||
|
||||
jobs:
|
||||
autoblack:
|
||||
if: github.repository_owner == 'explosion'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
ref: ${{ github.head_ref }}
|
||||
- uses: actions/setup-python@v2
|
||||
- run: pip install black
|
||||
- name: Auto-format code if needed
|
||||
run: black spacy
|
||||
# We can't run black --check here because that returns a non-zero excit
|
||||
# code and makes GitHub think the action failed
|
||||
- name: Check for modified files
|
||||
id: git-check
|
||||
run: echo ::set-output name=modified::$(if git diff-index --quiet HEAD --; then echo "false"; else echo "true"; fi)
|
||||
- name: Create Pull Request
|
||||
if: steps.git-check.outputs.modified == 'true'
|
||||
uses: peter-evans/create-pull-request@v3
|
||||
with:
|
||||
title: Auto-format code with black
|
||||
labels: meta
|
||||
commit-message: Auto-format code with black
|
||||
committer: GitHub <noreply@github.com>
|
||||
author: explosion-bot <explosion-bot@users.noreply.github.com>
|
||||
body: _This PR is auto-generated._
|
||||
branch: autoblack
|
||||
delete-branch: true
|
||||
draft: false
|
||||
- name: Check outputs
|
||||
if: steps.git-check.outputs.modified == 'true'
|
||||
run: |
|
||||
echo "Pull Request Number - ${{ steps.cpr.outputs.pull-request-number }}"
|
||||
echo "Pull Request URL - ${{ steps.cpr.outputs.pull-request-url }}"
|
|
@ -8,14 +8,15 @@ on:
|
|||
|
||||
jobs:
|
||||
explosion-bot:
|
||||
runs-on: ubuntu-18.04
|
||||
if: github.repository_owner == 'explosion'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Dump GitHub context
|
||||
env:
|
||||
GITHUB_CONTEXT: ${{ toJson(github) }}
|
||||
run: echo "$GITHUB_CONTEXT"
|
||||
- uses: actions/checkout@v1
|
||||
- uses: actions/setup-python@v1
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/setup-python@v4
|
||||
- name: Install and run explosion-bot
|
||||
run: |
|
||||
pip install git+https://${{ secrets.EXPLOSIONBOT_TOKEN }}@github.com/explosion/explosion-bot
|
||||
|
|
|
@ -13,6 +13,7 @@ on:
|
|||
|
||||
jobs:
|
||||
issue-manager:
|
||||
if: github.repository_owner == 'explosion'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: tiangolo/issue-manager@0.4.0
|
||||
|
|
|
@ -13,9 +13,10 @@ concurrency:
|
|||
|
||||
jobs:
|
||||
action:
|
||||
if: github.repository_owner == 'explosion'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: dessant/lock-threads@v3
|
||||
- uses: dessant/lock-threads@v4
|
||||
with:
|
||||
process-only: 'issues'
|
||||
issue-inactive-days: '30'
|
||||
|
|
|
@ -14,7 +14,7 @@ jobs:
|
|||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v1
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
ref: ${{ matrix.branch }}
|
||||
- name: Get commits from past 24 hours
|
||||
|
@ -23,9 +23,9 @@ jobs:
|
|||
today=$(date '+%Y-%m-%d %H:%M:%S')
|
||||
yesterday=$(date -d "yesterday" '+%Y-%m-%d %H:%M:%S')
|
||||
if git log --after="$yesterday" --before="$today" | grep commit ; then
|
||||
echo "::set-output name=run_tests::true"
|
||||
echo run_tests=true >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "::set-output name=run_tests::false"
|
||||
echo run_tests=false >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Trigger buildkite build
|
||||
|
|
|
@ -7,6 +7,7 @@ on:
|
|||
|
||||
jobs:
|
||||
build:
|
||||
if: github.repository_owner == 'explosion'
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
|
@ -17,8 +18,10 @@ jobs:
|
|||
run: |
|
||||
echo "$GITHUB_CONTEXT"
|
||||
|
||||
- uses: actions/checkout@v1
|
||||
- uses: actions/setup-python@v1
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10'
|
||||
- name: Install Bernadette app dependency and send an alert
|
||||
env:
|
||||
SLACK_BOT_TOKEN: ${{ secrets.SLACK_BOT_TOKEN }}
|
||||
|
|
|
@ -0,0 +1,178 @@
|
|||
name: tests
|
||||
|
||||
on:
|
||||
push:
|
||||
branches-ignore:
|
||||
- "spacy.io"
|
||||
- "nightly.spacy.io"
|
||||
- "v2.spacy.io"
|
||||
paths-ignore:
|
||||
- "*.md"
|
||||
- "*.mdx"
|
||||
- "website/**"
|
||||
- ".github/workflows/**"
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened, edited]
|
||||
paths-ignore:
|
||||
- "*.md"
|
||||
- "*.mdx"
|
||||
- "website/**"
|
||||
|
||||
jobs:
|
||||
validate:
|
||||
name: Validate
|
||||
if: github.repository_owner == 'explosion'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Check out repo
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Configure Python version
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.7"
|
||||
architecture: x64
|
||||
|
||||
- name: black
|
||||
run: |
|
||||
python -m pip install black -c requirements.txt
|
||||
python -m black spacy --check
|
||||
- name: isort
|
||||
run: |
|
||||
python -m pip install isort -c requirements.txt
|
||||
python -m isort spacy --check
|
||||
- name: flake8
|
||||
run: |
|
||||
python -m pip install flake8==5.0.4
|
||||
python -m flake8 spacy --count --select=E901,E999,F821,F822,F823,W605 --show-source --statistics
|
||||
tests:
|
||||
name: Test
|
||||
needs: Validate
|
||||
strategy:
|
||||
fail-fast: true
|
||||
matrix:
|
||||
os: [ubuntu-latest, windows-latest, macos-latest]
|
||||
python_version: ["3.11"]
|
||||
include:
|
||||
- os: ubuntu-20.04
|
||||
python_version: "3.6"
|
||||
- os: windows-latest
|
||||
python_version: "3.7"
|
||||
- os: macos-latest
|
||||
python_version: "3.8"
|
||||
- os: ubuntu-latest
|
||||
python_version: "3.9"
|
||||
- os: windows-latest
|
||||
python_version: "3.10"
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
steps:
|
||||
- name: Check out repo
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Configure Python version
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python_version }}
|
||||
architecture: x64
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install -U build pip setuptools
|
||||
python -m pip install -U -r requirements.txt
|
||||
|
||||
- name: Build sdist
|
||||
run: |
|
||||
python -m build --sdist
|
||||
|
||||
- name: Run mypy
|
||||
run: |
|
||||
python -m mypy spacy
|
||||
if: matrix.python_version != '3.6'
|
||||
|
||||
- name: Delete source directory and .egg-info
|
||||
run: |
|
||||
rm -rf spacy *.egg-info
|
||||
shell: bash
|
||||
|
||||
- name: Uninstall all packages
|
||||
run: |
|
||||
python -m pip freeze
|
||||
python -m pip freeze --exclude pywin32 > installed.txt
|
||||
python -m pip uninstall -y -r installed.txt
|
||||
|
||||
- name: Install from sdist
|
||||
run: |
|
||||
SDIST=$(python -c "import os;print(os.listdir('./dist')[-1])" 2>&1)
|
||||
SPACY_NUM_BUILD_JOBS=2 python -m pip install dist/$SDIST
|
||||
shell: bash
|
||||
|
||||
- name: Test import
|
||||
run: python -W error -c "import spacy"
|
||||
|
||||
# - name: "Test download CLI"
|
||||
# run: |
|
||||
# python -m spacy download ca_core_news_sm
|
||||
# python -m spacy download ca_core_news_md
|
||||
# python -c "import spacy; nlp=spacy.load('ca_core_news_sm'); doc=nlp('test')"
|
||||
# if: matrix.python_version == '3.9'
|
||||
#
|
||||
# - name: "Test download_url in info CLI"
|
||||
# run: |
|
||||
# python -W error -m spacy info ca_core_news_sm | grep -q download_url
|
||||
# if: matrix.python_version == '3.9'
|
||||
#
|
||||
# - name: "Test no warnings on load (#11713)"
|
||||
# run: |
|
||||
# python -W error -c "import ca_core_news_sm; nlp = ca_core_news_sm.load(); doc=nlp('test')"
|
||||
# if: matrix.python_version == '3.9'
|
||||
|
||||
- name: "Test convert CLI"
|
||||
run: |
|
||||
python -m spacy convert extra/example_data/ner_example_data/ner-token-per-line-conll2003.json .
|
||||
if: matrix.python_version == '3.9'
|
||||
|
||||
- name: "Test debug config CLI"
|
||||
run: |
|
||||
python -m spacy init config -p ner -l ca ner.cfg
|
||||
python -m spacy debug config ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy
|
||||
if: matrix.python_version == '3.9'
|
||||
|
||||
- name: "Test debug data CLI"
|
||||
run: |
|
||||
# will have errors due to sparse data, check for summary in output
|
||||
python -m spacy debug data ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy | grep -q Summary
|
||||
if: matrix.python_version == '3.9'
|
||||
|
||||
- name: "Test train CLI"
|
||||
run: |
|
||||
python -m spacy train ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy --training.max_steps 10 --gpu-id -1
|
||||
if: matrix.python_version == '3.9'
|
||||
|
||||
# - name: "Test assemble CLI"
|
||||
# run: |
|
||||
# python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')"
|
||||
# PYTHONWARNINGS="error,ignore::DeprecationWarning" python -m spacy assemble ner_source_sm.cfg output_dir
|
||||
# if: matrix.python_version == '3.9'
|
||||
#
|
||||
# - name: "Test assemble CLI vectors warning"
|
||||
# run: |
|
||||
# python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_md'}; config.to_disk('ner_source_md.cfg')"
|
||||
# python -m spacy assemble ner_source_md.cfg output_dir 2>&1 | grep -q W113
|
||||
# if: matrix.python_version == '3.9'
|
||||
|
||||
- name: "Install test requirements"
|
||||
run: |
|
||||
python -m pip install -U -r requirements.txt
|
||||
|
||||
- name: "Run CPU tests"
|
||||
run: |
|
||||
python -m pytest --pyargs spacy -W error
|
||||
if: "!(startsWith(matrix.os, 'macos') && matrix.python_version == '3.11')"
|
||||
|
||||
- name: "Run CPU tests with thinc-apple-ops"
|
||||
run: |
|
||||
python -m pip install 'spacy[apple]'
|
||||
python -m pytest --pyargs spacy
|
||||
if: startsWith(matrix.os, 'macos') && matrix.python_version == '3.11'
|
|
@ -0,0 +1,33 @@
|
|||
name: universe validation
|
||||
|
||||
on:
|
||||
push:
|
||||
branches-ignore:
|
||||
- "spacy.io"
|
||||
- "nightly.spacy.io"
|
||||
- "v2.spacy.io"
|
||||
paths:
|
||||
- "website/meta/universe.json"
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened, edited]
|
||||
paths:
|
||||
- "website/meta/universe.json"
|
||||
|
||||
jobs:
|
||||
validate:
|
||||
name: Validate
|
||||
if: github.repository_owner == 'explosion'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Check out repo
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Configure Python version
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.7"
|
||||
architecture: x64
|
||||
|
||||
- name: Validate website/meta/universe.json
|
||||
run: |
|
||||
python .github/validate_universe_json.py website/meta/universe.json
|
|
@ -10,16 +10,6 @@ spacy/tests/package/setup.cfg
|
|||
spacy/tests/package/pyproject.toml
|
||||
spacy/tests/package/requirements.txt
|
||||
|
||||
# Website
|
||||
website/.cache/
|
||||
website/public/
|
||||
website/node_modules
|
||||
website/.npm
|
||||
website/logs
|
||||
*.log
|
||||
npm-debug.log*
|
||||
quickstart-training-generator.js
|
||||
|
||||
# Cython / C extensions
|
||||
cythonize.json
|
||||
spacy/*.html
|
||||
|
|
|
@ -5,7 +5,7 @@ repos:
|
|||
- id: black
|
||||
language_version: python3.7
|
||||
additional_dependencies: ['click==8.0.4']
|
||||
- repo: https://gitlab.com/pycqa/flake8
|
||||
- repo: https://github.com/pycqa/flake8
|
||||
rev: 5.0.4
|
||||
hooks:
|
||||
- id: flake8
|
||||
|
|
|
@ -173,6 +173,11 @@ formatting and [`flake8`](http://flake8.pycqa.org/en/latest/) for linting its
|
|||
Python modules. If you've built spaCy from source, you'll already have both
|
||||
tools installed.
|
||||
|
||||
As a general rule of thumb, we use f-strings for any formatting of strings.
|
||||
One exception are calls to Python's `logging` functionality.
|
||||
To avoid unnecessary string conversions in these cases, we use string formatting
|
||||
templates with `%s` and `%d` etc.
|
||||
|
||||
**⚠️ Note that formatting and linting is currently only possible for Python
|
||||
modules in `.py` files, not Cython modules in `.pyx` and `.pxd` files.**
|
||||
|
||||
|
|
40
README.md
40
README.md
|
@ -8,15 +8,18 @@ be used in real products.
|
|||
|
||||
spaCy comes with
|
||||
[pretrained pipelines](https://spacy.io/models) and
|
||||
currently supports tokenization and training for **60+ languages**. It features
|
||||
currently supports tokenization and training for **70+ languages**. It features
|
||||
state-of-the-art speed and **neural network models** for tagging,
|
||||
parsing, **named entity recognition**, **text classification** and more,
|
||||
multi-task learning with pretrained **transformers** like BERT, as well as a
|
||||
production-ready [**training system**](https://spacy.io/usage/training) and easy
|
||||
model packaging, deployment and workflow management. spaCy is commercial
|
||||
open-source software, released under the MIT license.
|
||||
open-source software, released under the [MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE).
|
||||
|
||||
💫 **Version 3.4.0 out now!**
|
||||
💥 **We'd love to hear more about your experience with spaCy!**
|
||||
[Fill out our survey here.](https://form.typeform.com/to/aMel9q9f)
|
||||
|
||||
💫 **Version 3.5 out now!**
|
||||
[Check out the release notes here.](https://github.com/explosion/spaCy/releases)
|
||||
|
||||
[![Azure Pipelines](https://img.shields.io/azure-devops/build/explosion-ai/public/8/master.svg?logo=azure-pipelines&style=flat-square&label=build)](https://dev.azure.com/explosion-ai/public/_build?definitionId=8)
|
||||
|
@ -32,20 +35,22 @@ open-source software, released under the MIT license.
|
|||
|
||||
## 📖 Documentation
|
||||
|
||||
| Documentation | |
|
||||
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| ⭐️ **[spaCy 101]** | New to spaCy? Here's everything you need to know! |
|
||||
| 📚 **[Usage Guides]** | How to use spaCy and its features. |
|
||||
| 🚀 **[New in v3.0]** | New features, backwards incompatibilities and migration guide. |
|
||||
| 🪐 **[Project Templates]** | End-to-end workflows you can clone, modify and run. |
|
||||
| 🎛 **[API Reference]** | The detailed reference for spaCy's API. |
|
||||
| 📦 **[Models]** | Download trained pipelines for spaCy. |
|
||||
| 🌌 **[Universe]** | Plugins, extensions, demos and books from the spaCy ecosystem. |
|
||||
| 👩🏫 **[Online Course]** | Learn spaCy in this free and interactive online course. |
|
||||
| 📺 **[Videos]** | Our YouTube channel with video tutorials, talks and more. |
|
||||
| 🛠 **[Changelog]** | Changes and version history. |
|
||||
| 💝 **[Contribute]** | How to contribute to the spaCy project and code base. |
|
||||
| Documentation | |
|
||||
| ----------------------------- | ---------------------------------------------------------------------- |
|
||||
| ⭐️ **[spaCy 101]** | New to spaCy? Here's everything you need to know! |
|
||||
| 📚 **[Usage Guides]** | How to use spaCy and its features. |
|
||||
| 🚀 **[New in v3.0]** | New features, backwards incompatibilities and migration guide. |
|
||||
| 🪐 **[Project Templates]** | End-to-end workflows you can clone, modify and run. |
|
||||
| 🎛 **[API Reference]** | The detailed reference for spaCy's API. |
|
||||
| 📦 **[Models]** | Download trained pipelines for spaCy. |
|
||||
| 🌌 **[Universe]** | Plugins, extensions, demos and books from the spaCy ecosystem. |
|
||||
| ⚙️ **[spaCy VS Code Extension]** | Additional tooling and features for working with spaCy's config files. |
|
||||
| 👩🏫 **[Online Course]** | Learn spaCy in this free and interactive online course. |
|
||||
| 📺 **[Videos]** | Our YouTube channel with video tutorials, talks and more. |
|
||||
| 🛠 **[Changelog]** | Changes and version history. |
|
||||
| 💝 **[Contribute]** | How to contribute to the spaCy project and code base. |
|
||||
| <a href="https://explosion.ai/spacy-tailored-pipelines"><img src="https://user-images.githubusercontent.com/13643239/152853098-1c761611-ccb0-4ec6-9066-b234552831fe.png" width="125" alt="spaCy Tailored Pipelines"/></a> | Get a custom spaCy pipeline, tailor-made for your NLP problem by spaCy's core developers. Streamlined, production-ready, predictable and maintainable. Start by completing our 5-minute questionnaire to tell us what you need and we'll be in touch! **[Learn more →](https://explosion.ai/spacy-tailored-pipelines)** |
|
||||
| <a href="https://explosion.ai/spacy-tailored-analysis"><img src="https://user-images.githubusercontent.com/1019791/206151300-b00cd189-e503-4797-aa1e-1bb6344062c5.png" width="125" alt="spaCy Tailored Pipelines"/></a> | Bespoke advice for problem solving, strategy and analysis for applied NLP projects. Services include data strategy, code reviews, pipeline design and annotation coaching. Curious? Fill in our 5-minute questionnaire to tell us what you need and we'll be in touch! **[Learn more →](https://explosion.ai/spacy-tailored-analysis)** |
|
||||
|
||||
[spacy 101]: https://spacy.io/usage/spacy-101
|
||||
[new in v3.0]: https://spacy.io/usage/v3
|
||||
|
@ -53,6 +58,7 @@ open-source software, released under the MIT license.
|
|||
[api reference]: https://spacy.io/api/
|
||||
[models]: https://spacy.io/models
|
||||
[universe]: https://spacy.io/universe
|
||||
[spaCy VS Code Extension]: https://github.com/explosion/spacy-vscode
|
||||
[videos]: https://www.youtube.com/c/ExplosionAI
|
||||
[online course]: https://course.spacy.io
|
||||
[project templates]: https://github.com/explosion/projects
|
||||
|
@ -79,7 +85,7 @@ more people can benefit from it.
|
|||
|
||||
## Features
|
||||
|
||||
- Support for **60+ languages**
|
||||
- Support for **70+ languages**
|
||||
- **Trained pipelines** for different languages and tasks
|
||||
- Multi-task learning with pretrained **transformers** like BERT
|
||||
- Support for pretrained **word vectors** and embeddings
|
||||
|
|
|
@ -1,120 +0,0 @@
|
|||
trigger:
|
||||
batch: true
|
||||
branches:
|
||||
include:
|
||||
- "*"
|
||||
exclude:
|
||||
- "spacy.io"
|
||||
- "nightly.spacy.io"
|
||||
- "v2.spacy.io"
|
||||
paths:
|
||||
exclude:
|
||||
- "website/*"
|
||||
- "*.md"
|
||||
- ".github/workflows/*"
|
||||
pr:
|
||||
paths:
|
||||
exclude:
|
||||
- "*.md"
|
||||
- "website/docs/*"
|
||||
- "website/src/*"
|
||||
- ".github/workflows/*"
|
||||
|
||||
jobs:
|
||||
# Perform basic checks for most important errors (syntax etc.) Uses the config
|
||||
# defined in .flake8 and overwrites the selected codes.
|
||||
- job: "Validate"
|
||||
pool:
|
||||
vmImage: "ubuntu-latest"
|
||||
steps:
|
||||
- task: UsePythonVersion@0
|
||||
inputs:
|
||||
versionSpec: "3.7"
|
||||
- script: |
|
||||
pip install flake8==5.0.4
|
||||
python -m flake8 spacy --count --select=E901,E999,F821,F822,F823,W605 --show-source --statistics
|
||||
displayName: "flake8"
|
||||
|
||||
- job: "Test"
|
||||
dependsOn: "Validate"
|
||||
strategy:
|
||||
matrix:
|
||||
# We're only running one platform per Python version to speed up builds
|
||||
Python36Linux:
|
||||
imageName: "ubuntu-latest"
|
||||
python.version: "3.6"
|
||||
# Python36Windows:
|
||||
# imageName: "windows-latest"
|
||||
# python.version: "3.6"
|
||||
# Python36Mac:
|
||||
# imageName: "macos-latest"
|
||||
# python.version: "3.6"
|
||||
# Python37Linux:
|
||||
# imageName: "ubuntu-latest"
|
||||
# python.version: "3.7"
|
||||
Python37Windows:
|
||||
imageName: "windows-latest"
|
||||
python.version: "3.7"
|
||||
# Python37Mac:
|
||||
# imageName: "macos-latest"
|
||||
# python.version: "3.7"
|
||||
# Python38Linux:
|
||||
# imageName: "ubuntu-latest"
|
||||
# python.version: "3.8"
|
||||
# Python38Windows:
|
||||
# imageName: "windows-latest"
|
||||
# python.version: "3.8"
|
||||
Python38Mac:
|
||||
imageName: "macos-latest"
|
||||
python.version: "3.8"
|
||||
Python39Linux:
|
||||
imageName: "ubuntu-latest"
|
||||
python.version: "3.9"
|
||||
# Python39Windows:
|
||||
# imageName: "windows-latest"
|
||||
# python.version: "3.9"
|
||||
# Python39Mac:
|
||||
# imageName: "macos-latest"
|
||||
# python.version: "3.9"
|
||||
Python310Linux:
|
||||
imageName: "ubuntu-latest"
|
||||
python.version: "3.10"
|
||||
Python310Windows:
|
||||
imageName: "windows-latest"
|
||||
python.version: "3.10"
|
||||
Python310Mac:
|
||||
imageName: "macos-latest"
|
||||
python.version: "3.10"
|
||||
Python311Linux:
|
||||
imageName: 'ubuntu-latest'
|
||||
python.version: '3.11.0-rc.2'
|
||||
Python311Windows:
|
||||
imageName: 'windows-latest'
|
||||
python.version: '3.11.0-rc.2'
|
||||
Python311Mac:
|
||||
imageName: 'macos-latest'
|
||||
python.version: '3.11.0-rc.2'
|
||||
maxParallel: 4
|
||||
pool:
|
||||
vmImage: $(imageName)
|
||||
steps:
|
||||
- template: .github/azure-steps.yml
|
||||
parameters:
|
||||
python_version: '$(python.version)'
|
||||
architecture: 'x64'
|
||||
|
||||
# - job: "TestGPU"
|
||||
# dependsOn: "Validate"
|
||||
# strategy:
|
||||
# matrix:
|
||||
# Python38LinuxX64_GPU:
|
||||
# python.version: '3.8'
|
||||
# pool:
|
||||
# name: "LinuxX64_GPU"
|
||||
# steps:
|
||||
# - template: .github/azure-steps.yml
|
||||
# parameters:
|
||||
# python_version: '$(python.version)'
|
||||
# architecture: 'x64'
|
||||
# gpu: true
|
||||
# num_build_jobs: 24
|
|
@ -5,4 +5,5 @@ numpy==1.17.3; python_version=='3.8' and platform_machine!='aarch64'
|
|||
numpy==1.19.2; python_version=='3.8' and platform_machine=='aarch64'
|
||||
numpy==1.19.3; python_version=='3.9'
|
||||
numpy==1.21.3; python_version=='3.10'
|
||||
numpy; python_version>='3.11'
|
||||
numpy==1.23.2; python_version=='3.11'
|
||||
numpy; python_version>='3.12'
|
||||
|
|
|
@ -5,7 +5,10 @@ requires = [
|
|||
"cymem>=2.0.2,<2.1.0",
|
||||
"preshed>=3.0.2,<3.1.0",
|
||||
"murmurhash>=0.28.0,<1.1.0",
|
||||
"thinc>=8.1.0,<8.2.0",
|
||||
"thinc>=8.1.8,<8.2.0",
|
||||
"numpy>=1.15.0",
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[tool.isort]
|
||||
profile = "black"
|
||||
|
|
|
@ -1,16 +1,17 @@
|
|||
# Our libraries
|
||||
spacy-legacy>=3.0.10,<3.1.0
|
||||
spacy-legacy>=3.0.11,<3.1.0
|
||||
spacy-loggers>=1.0.0,<2.0.0
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc>=8.1.0,<8.2.0
|
||||
thinc>=8.1.8,<8.2.0
|
||||
ml_datasets>=0.2.0,<0.3.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
wasabi>=0.9.1,<1.1.0
|
||||
wasabi>=0.9.1,<1.2.0
|
||||
srsly>=2.4.3,<3.0.0
|
||||
catalogue>=2.0.6,<2.1.0
|
||||
typer>=0.3.0,<0.5.0
|
||||
pathy>=0.3.5
|
||||
typer>=0.3.0,<0.10.0
|
||||
pathy>=0.10.0
|
||||
smart-open>=5.2.1,<7.0.0
|
||||
# Third party dependencies
|
||||
numpy>=1.15.0
|
||||
requests>=2.13.0,<3.0.0
|
||||
|
@ -21,7 +22,7 @@ langcodes>=3.2.0,<4.0.0
|
|||
# Official Python utilities
|
||||
setuptools
|
||||
packaging>=20.0
|
||||
typing_extensions>=3.7.4.1,<4.2.0; python_version < "3.8"
|
||||
typing_extensions>=3.7.4.1,<4.5.0; python_version < "3.8"
|
||||
# Development dependencies
|
||||
pre-commit>=2.13.0
|
||||
cython>=0.25,<3.0
|
||||
|
@ -30,10 +31,11 @@ pytest-timeout>=1.3.0,<2.0.0
|
|||
mock>=2.0.0,<3.0.0
|
||||
flake8>=3.8.0,<6.0.0
|
||||
hypothesis>=3.27.0,<7.0.0
|
||||
mypy>=0.980,<0.990; platform_machine != "aarch64" and python_version >= "3.7"
|
||||
mypy>=0.990,<1.1.0; platform_machine != "aarch64" and python_version >= "3.7"
|
||||
types-dataclasses>=0.1.3; python_version < "3.7"
|
||||
types-mock>=0.1.1
|
||||
types-setuptools>=57.0.0
|
||||
types-requests
|
||||
types-setuptools>=57.0.0
|
||||
black>=22.0,<23.0
|
||||
black==22.3.0
|
||||
isort>=5.0,<6.0
|
||||
|
|
54
setup.cfg
54
setup.cfg
|
@ -22,6 +22,7 @@ classifiers =
|
|||
Programming Language :: Python :: 3.8
|
||||
Programming Language :: Python :: 3.9
|
||||
Programming Language :: Python :: 3.10
|
||||
Programming Language :: Python :: 3.11
|
||||
Topic :: Scientific/Engineering
|
||||
project_urls =
|
||||
Release notes = https://github.com/explosion/spaCy/releases
|
||||
|
@ -38,21 +39,22 @@ setup_requires =
|
|||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
thinc>=8.1.0,<8.2.0
|
||||
thinc>=8.1.8,<8.2.0
|
||||
install_requires =
|
||||
# Our libraries
|
||||
spacy-legacy>=3.0.10,<3.1.0
|
||||
spacy-legacy>=3.0.11,<3.1.0
|
||||
spacy-loggers>=1.0.0,<2.0.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc>=8.1.0,<8.2.0
|
||||
wasabi>=0.9.1,<1.1.0
|
||||
thinc>=8.1.8,<8.2.0
|
||||
wasabi>=0.9.1,<1.2.0
|
||||
srsly>=2.4.3,<3.0.0
|
||||
catalogue>=2.0.6,<2.1.0
|
||||
# Third-party dependencies
|
||||
typer>=0.3.0,<0.5.0
|
||||
pathy>=0.3.5
|
||||
typer>=0.3.0,<0.10.0
|
||||
pathy>=0.10.0
|
||||
smart-open>=5.2.1,<7.0.0
|
||||
tqdm>=4.38.0,<5.0.0
|
||||
numpy>=1.15.0
|
||||
requests>=2.13.0,<3.0.0
|
||||
|
@ -61,7 +63,7 @@ install_requires =
|
|||
# Official Python utilities
|
||||
setuptools
|
||||
packaging>=20.0
|
||||
typing_extensions>=3.7.4,<4.2.0; python_version < "3.8"
|
||||
typing_extensions>=3.7.4.1,<4.5.0; python_version < "3.8"
|
||||
langcodes>=3.2.0,<4.0.0
|
||||
|
||||
[options.entry_points]
|
||||
|
@ -72,45 +74,45 @@ console_scripts =
|
|||
lookups =
|
||||
spacy_lookups_data>=1.0.3,<1.1.0
|
||||
transformers =
|
||||
spacy_transformers>=1.1.2,<1.2.0
|
||||
spacy_transformers>=1.1.2,<1.3.0
|
||||
ray =
|
||||
spacy_ray>=0.1.0,<1.0.0
|
||||
cuda =
|
||||
cupy>=5.0.0b4,<12.0.0
|
||||
cupy>=5.0.0b4,<13.0.0
|
||||
cuda80 =
|
||||
cupy-cuda80>=5.0.0b4,<12.0.0
|
||||
cupy-cuda80>=5.0.0b4,<13.0.0
|
||||
cuda90 =
|
||||
cupy-cuda90>=5.0.0b4,<12.0.0
|
||||
cupy-cuda90>=5.0.0b4,<13.0.0
|
||||
cuda91 =
|
||||
cupy-cuda91>=5.0.0b4,<12.0.0
|
||||
cupy-cuda91>=5.0.0b4,<13.0.0
|
||||
cuda92 =
|
||||
cupy-cuda92>=5.0.0b4,<12.0.0
|
||||
cupy-cuda92>=5.0.0b4,<13.0.0
|
||||
cuda100 =
|
||||
cupy-cuda100>=5.0.0b4,<12.0.0
|
||||
cupy-cuda100>=5.0.0b4,<13.0.0
|
||||
cuda101 =
|
||||
cupy-cuda101>=5.0.0b4,<12.0.0
|
||||
cupy-cuda101>=5.0.0b4,<13.0.0
|
||||
cuda102 =
|
||||
cupy-cuda102>=5.0.0b4,<12.0.0
|
||||
cupy-cuda102>=5.0.0b4,<13.0.0
|
||||
cuda110 =
|
||||
cupy-cuda110>=5.0.0b4,<12.0.0
|
||||
cupy-cuda110>=5.0.0b4,<13.0.0
|
||||
cuda111 =
|
||||
cupy-cuda111>=5.0.0b4,<12.0.0
|
||||
cupy-cuda111>=5.0.0b4,<13.0.0
|
||||
cuda112 =
|
||||
cupy-cuda112>=5.0.0b4,<12.0.0
|
||||
cupy-cuda112>=5.0.0b4,<13.0.0
|
||||
cuda113 =
|
||||
cupy-cuda113>=5.0.0b4,<12.0.0
|
||||
cupy-cuda113>=5.0.0b4,<13.0.0
|
||||
cuda114 =
|
||||
cupy-cuda114>=5.0.0b4,<12.0.0
|
||||
cupy-cuda114>=5.0.0b4,<13.0.0
|
||||
cuda115 =
|
||||
cupy-cuda115>=5.0.0b4,<12.0.0
|
||||
cupy-cuda115>=5.0.0b4,<13.0.0
|
||||
cuda116 =
|
||||
cupy-cuda116>=5.0.0b4,<12.0.0
|
||||
cupy-cuda116>=5.0.0b4,<13.0.0
|
||||
cuda117 =
|
||||
cupy-cuda117>=5.0.0b4,<12.0.0
|
||||
cupy-cuda117>=5.0.0b4,<13.0.0
|
||||
cuda11x =
|
||||
cupy-cuda11x>=11.0.0,<12.0.0
|
||||
cupy-cuda11x>=11.0.0,<13.0.0
|
||||
cuda-autodetect =
|
||||
cupy-wheel>=11.0.0,<12.0.0
|
||||
cupy-wheel>=11.0.0,<13.0.0
|
||||
apple =
|
||||
thinc-apple-ops>=0.1.0.dev0,<1.0.0
|
||||
# Language tokenizers with external dependencies
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
from typing import Union, Iterable, Dict, Any
|
||||
from pathlib import Path
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterable, Union
|
||||
|
||||
# set library-specific custom warning handling before doing anything else
|
||||
from .errors import setup_default_warnings
|
||||
|
@ -8,20 +8,17 @@ from .errors import setup_default_warnings
|
|||
setup_default_warnings() # noqa: E402
|
||||
|
||||
# These are imported as part of the API
|
||||
from thinc.api import prefer_gpu, require_gpu, require_cpu # noqa: F401
|
||||
from thinc.api import Config
|
||||
from thinc.api import Config, prefer_gpu, require_cpu, require_gpu # noqa: F401
|
||||
|
||||
from . import pipeline # noqa: F401
|
||||
from .cli.info import info # noqa: F401
|
||||
from .glossary import explain # noqa: F401
|
||||
from .about import __version__ # noqa: F401
|
||||
from .util import registry, logger # noqa: F401
|
||||
|
||||
from .errors import Errors
|
||||
from .language import Language
|
||||
from .vocab import Vocab
|
||||
from . import util
|
||||
|
||||
from .about import __version__ # noqa: F401
|
||||
from .cli.info import info # noqa: F401
|
||||
from .errors import Errors
|
||||
from .glossary import explain # noqa: F401
|
||||
from .language import Language
|
||||
from .util import logger, registry # noqa: F401
|
||||
from .vocab import Vocab
|
||||
|
||||
if sys.maxunicode == 65535:
|
||||
raise SystemError(Errors.E130)
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# fmt: off
|
||||
__title__ = "spacy"
|
||||
__version__ = "3.4.2"
|
||||
__version__ = "3.6.0"
|
||||
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
|
||||
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
|
||||
__projects__ = "https://github.com/explosion/projects"
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
# Reserve 64 values for flag features
|
||||
from . cimport symbols
|
||||
|
||||
|
||||
cdef enum attr_id_t:
|
||||
NULL_ATTR
|
||||
IS_ALPHA
|
||||
|
|
|
@ -1,32 +1,35 @@
|
|||
from wasabi import msg
|
||||
|
||||
from ._util import app, setup_cli # noqa: F401
|
||||
from .apply import apply # noqa: F401
|
||||
from .assemble import assemble_cli # noqa: F401
|
||||
|
||||
# These are the actual functions, NOT the wrapped CLI commands. The CLI commands
|
||||
# are registered automatically and won't have to be imported here.
|
||||
from .download import download # noqa: F401
|
||||
from .info import info # noqa: F401
|
||||
from .package import package # noqa: F401
|
||||
from .profile import profile # noqa: F401
|
||||
from .train import train_cli # noqa: F401
|
||||
from .assemble import assemble_cli # noqa: F401
|
||||
from .pretrain import pretrain # noqa: F401
|
||||
from .debug_data import debug_data # noqa: F401
|
||||
from .debug_config import debug_config # noqa: F401
|
||||
from .debug_model import debug_model # noqa: F401
|
||||
from .debug_diff import debug_diff # noqa: F401
|
||||
from .evaluate import evaluate # noqa: F401
|
||||
from .benchmark_speed import benchmark_speed_cli # noqa: F401
|
||||
from .convert import convert # noqa: F401
|
||||
from .debug_config import debug_config # noqa: F401
|
||||
from .debug_data import debug_data # noqa: F401
|
||||
from .debug_diff import debug_diff # noqa: F401
|
||||
from .debug_model import debug_model # noqa: F401
|
||||
from .download import download # noqa: F401
|
||||
from .evaluate import evaluate # noqa: F401
|
||||
from .find_threshold import find_threshold # noqa: F401
|
||||
from .info import info # noqa: F401
|
||||
from .init_config import fill_config, init_config # noqa: F401
|
||||
from .init_pipeline import init_pipeline_cli # noqa: F401
|
||||
from .init_config import init_config, fill_config # noqa: F401
|
||||
from .validate import validate # noqa: F401
|
||||
from .project.clone import project_clone # noqa: F401
|
||||
from .package import package # noqa: F401
|
||||
from .pretrain import pretrain # noqa: F401
|
||||
from .profile import profile # noqa: F401
|
||||
from .project.assets import project_assets # noqa: F401
|
||||
from .project.run import project_run # noqa: F401
|
||||
from .project.dvc import project_update_dvc # noqa: F401
|
||||
from .project.push import project_push # noqa: F401
|
||||
from .project.pull import project_pull # noqa: F401
|
||||
from .project.clone import project_clone # noqa: F401
|
||||
from .project.document import project_document # noqa: F401
|
||||
from .project.dvc import project_update_dvc # noqa: F401
|
||||
from .project.pull import project_pull # noqa: F401
|
||||
from .project.push import project_push # noqa: F401
|
||||
from .project.run import project_run # noqa: F401
|
||||
from .train import train_cli # noqa: F401
|
||||
from .validate import validate # noqa: F401
|
||||
|
||||
|
||||
@app.command("link", no_args_is_help=True, deprecated=True, hidden=True)
|
||||
|
|
|
@ -1,29 +1,47 @@
|
|||
from typing import Dict, Any, Union, List, Optional, Tuple, Iterable
|
||||
from typing import TYPE_CHECKING, overload
|
||||
import sys
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from wasabi import msg, Printer
|
||||
import srsly
|
||||
import hashlib
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
from configparser import InterpolationError
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Dict,
|
||||
Iterable,
|
||||
List,
|
||||
Optional,
|
||||
Tuple,
|
||||
Union,
|
||||
overload,
|
||||
)
|
||||
|
||||
import srsly
|
||||
import typer
|
||||
from click import NoSuchOption
|
||||
from click.parser import split_arg_string
|
||||
from typer.main import get_command
|
||||
from contextlib import contextmanager
|
||||
from thinc.api import Config, ConfigValidationError, require_gpu
|
||||
from thinc.util import gpu_is_available
|
||||
from configparser import InterpolationError
|
||||
import os
|
||||
from typer.main import get_command
|
||||
from wasabi import Printer, msg
|
||||
|
||||
from .. import about
|
||||
from ..compat import Literal
|
||||
from ..schemas import ProjectConfigSchema, validate
|
||||
from ..util import import_file, run_command, make_tempdir, registry, logger
|
||||
from ..util import is_compatible_version, SimpleFrozenDict, ENV_VARS
|
||||
from .. import about
|
||||
from ..util import (
|
||||
ENV_VARS,
|
||||
SimpleFrozenDict,
|
||||
import_file,
|
||||
is_compatible_version,
|
||||
logger,
|
||||
make_tempdir,
|
||||
registry,
|
||||
run_command,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pathy import Pathy # noqa: F401
|
||||
from pathy import FluidPath # noqa: F401
|
||||
|
||||
|
||||
SDIST_SUFFIX = ".tar.gz"
|
||||
|
@ -46,6 +64,7 @@ DEBUG_HELP = """Suite of helpful commands for debugging and profiling. Includes
|
|||
commands to check and validate your config files, training and evaluation data,
|
||||
and custom model implementations.
|
||||
"""
|
||||
BENCHMARK_HELP = """Commands for benchmarking pipelines."""
|
||||
INIT_HELP = """Commands for initializing configs and pipeline packages."""
|
||||
|
||||
# Wrappers for Typer's annotations. Initially created to set defaults and to
|
||||
|
@ -54,12 +73,14 @@ Arg = typer.Argument
|
|||
Opt = typer.Option
|
||||
|
||||
app = typer.Typer(name=NAME, help=HELP)
|
||||
benchmark_cli = typer.Typer(name="benchmark", help=BENCHMARK_HELP, no_args_is_help=True)
|
||||
project_cli = typer.Typer(name="project", help=PROJECT_HELP, no_args_is_help=True)
|
||||
debug_cli = typer.Typer(name="debug", help=DEBUG_HELP, no_args_is_help=True)
|
||||
init_cli = typer.Typer(name="init", help=INIT_HELP, no_args_is_help=True)
|
||||
|
||||
app.add_typer(project_cli)
|
||||
app.add_typer(debug_cli)
|
||||
app.add_typer(benchmark_cli)
|
||||
app.add_typer(init_cli)
|
||||
|
||||
|
||||
|
@ -87,9 +108,9 @@ def parse_config_overrides(
|
|||
cli_overrides = _parse_overrides(args, is_cli=True)
|
||||
if cli_overrides:
|
||||
keys = [k for k in cli_overrides if k not in env_overrides]
|
||||
logger.debug(f"Config overrides from CLI: {keys}")
|
||||
logger.debug("Config overrides from CLI: %s", keys)
|
||||
if env_overrides:
|
||||
logger.debug(f"Config overrides from env variables: {list(env_overrides)}")
|
||||
logger.debug("Config overrides from env variables: %s", list(env_overrides))
|
||||
return {**cli_overrides, **env_overrides}
|
||||
|
||||
|
||||
|
@ -158,15 +179,15 @@ def load_project_config(
|
|||
sys.exit(1)
|
||||
validate_project_version(config)
|
||||
validate_project_commands(config)
|
||||
if interpolate:
|
||||
err = f"{PROJECT_FILE} validation error"
|
||||
with show_validation_error(title=err, hint_fill=False):
|
||||
config = substitute_project_variables(config, overrides)
|
||||
# Make sure directories defined in config exist
|
||||
for subdir in config.get("directories", []):
|
||||
dir_path = path / subdir
|
||||
if not dir_path.exists():
|
||||
dir_path.mkdir(parents=True)
|
||||
if interpolate:
|
||||
err = f"{PROJECT_FILE} validation error"
|
||||
with show_validation_error(title=err, hint_fill=False):
|
||||
config = substitute_project_variables(config, overrides)
|
||||
return config
|
||||
|
||||
|
||||
|
@ -331,7 +352,7 @@ def import_code(code_path: Optional[Union[Path, str]]) -> None:
|
|||
msg.fail(f"Couldn't load Python code: {code_path}", e, exits=1)
|
||||
|
||||
|
||||
def upload_file(src: Path, dest: Union[str, "Pathy"]) -> None:
|
||||
def upload_file(src: Path, dest: Union[str, "FluidPath"]) -> None:
|
||||
"""Upload a file.
|
||||
|
||||
src (Path): The source path.
|
||||
|
@ -339,13 +360,20 @@ def upload_file(src: Path, dest: Union[str, "Pathy"]) -> None:
|
|||
"""
|
||||
import smart_open
|
||||
|
||||
# Create parent directories for local paths
|
||||
if isinstance(dest, Path):
|
||||
if not dest.parent.exists():
|
||||
dest.parent.mkdir(parents=True)
|
||||
|
||||
dest = str(dest)
|
||||
with smart_open.open(dest, mode="wb") as output_file:
|
||||
with src.open(mode="rb") as input_file:
|
||||
output_file.write(input_file.read())
|
||||
|
||||
|
||||
def download_file(src: Union[str, "Pathy"], dest: Path, *, force: bool = False) -> None:
|
||||
def download_file(
|
||||
src: Union[str, "FluidPath"], dest: Path, *, force: bool = False
|
||||
) -> None:
|
||||
"""Download a file using smart_open.
|
||||
|
||||
url (str): The URL of the file.
|
||||
|
@ -358,7 +386,7 @@ def download_file(src: Union[str, "Pathy"], dest: Path, *, force: bool = False)
|
|||
if dest.exists() and not force:
|
||||
return None
|
||||
src = str(src)
|
||||
with smart_open.open(src, mode="rb", ignore_ext=True) as input_file:
|
||||
with smart_open.open(src, mode="rb", compression="disable") as input_file:
|
||||
with dest.open(mode="wb") as output_file:
|
||||
shutil.copyfileobj(input_file, output_file)
|
||||
|
||||
|
@ -368,7 +396,7 @@ def ensure_pathy(path):
|
|||
slow and annoying Google Cloud warning)."""
|
||||
from pathy import Pathy # noqa: F811
|
||||
|
||||
return Pathy(path)
|
||||
return Pathy.fluid(path)
|
||||
|
||||
|
||||
def git_checkout(
|
||||
|
@ -575,6 +603,33 @@ def setup_gpu(use_gpu: int, silent=None) -> None:
|
|||
local_msg.info("To switch to GPU 0, use the option: --gpu-id 0")
|
||||
|
||||
|
||||
def walk_directory(path: Path, suffix: Optional[str] = None) -> List[Path]:
|
||||
"""Given a directory and a suffix, recursively find all files matching the suffix.
|
||||
Directories or files with names beginning with a . are ignored, but hidden flags on
|
||||
filesystems are not checked.
|
||||
When provided with a suffix `None`, there is no suffix-based filtering."""
|
||||
if not path.is_dir():
|
||||
return [path]
|
||||
paths = [path]
|
||||
locs = []
|
||||
seen = set()
|
||||
for path in paths:
|
||||
if str(path) in seen:
|
||||
continue
|
||||
seen.add(str(path))
|
||||
if path.parts[-1].startswith("."):
|
||||
continue
|
||||
elif path.is_dir():
|
||||
paths.extend(path.iterdir())
|
||||
elif suffix is not None and not path.parts[-1].endswith(suffix):
|
||||
continue
|
||||
else:
|
||||
locs.append(path)
|
||||
# It's good to sort these, in case the ordering messes up cache.
|
||||
locs.sort()
|
||||
return locs
|
||||
|
||||
|
||||
def _format_number(number: Union[int, float], ndigits: int = 2) -> str:
|
||||
"""Formats a number (float or int) rounding to `ndigits`, without truncating trailing 0s,
|
||||
as happens with `round(number, ndigits)`"""
|
||||
|
|
|
@ -0,0 +1,140 @@
|
|||
from itertools import chain
|
||||
from pathlib import Path
|
||||
from typing import Iterable, List, Optional, Union, cast
|
||||
|
||||
import srsly
|
||||
import tqdm
|
||||
from wasabi import msg
|
||||
|
||||
from ..tokens import Doc, DocBin
|
||||
from ..util import ensure_path, load_model
|
||||
from ..vocab import Vocab
|
||||
from ._util import Arg, Opt, app, import_code, setup_gpu, walk_directory
|
||||
|
||||
path_help = """Location of the documents to predict on.
|
||||
Can be a single file in .spacy format or a .jsonl file.
|
||||
Files with other extensions are treated as single plain text documents.
|
||||
If a directory is provided it is traversed recursively to grab
|
||||
all files to be processed.
|
||||
The files can be a mixture of .spacy, .jsonl and text files.
|
||||
If .jsonl is provided the specified field is going
|
||||
to be grabbed ("text" by default)."""
|
||||
|
||||
out_help = "Path to save the resulting .spacy file"
|
||||
code_help = (
|
||||
"Path to Python file with additional " "code (registered functions) to be imported"
|
||||
)
|
||||
gold_help = "Use gold preprocessing provided in the .spacy files"
|
||||
force_msg = (
|
||||
"The provided output file already exists. "
|
||||
"To force overwriting the output file, set the --force or -F flag."
|
||||
)
|
||||
|
||||
|
||||
DocOrStrStream = Union[Iterable[str], Iterable[Doc]]
|
||||
|
||||
|
||||
def _stream_docbin(path: Path, vocab: Vocab) -> Iterable[Doc]:
|
||||
"""
|
||||
Stream Doc objects from DocBin.
|
||||
"""
|
||||
docbin = DocBin().from_disk(path)
|
||||
for doc in docbin.get_docs(vocab):
|
||||
yield doc
|
||||
|
||||
|
||||
def _stream_jsonl(path: Path, field: str) -> Iterable[str]:
|
||||
"""
|
||||
Stream "text" field from JSONL. If the field "text" is
|
||||
not found it raises error.
|
||||
"""
|
||||
for entry in srsly.read_jsonl(path):
|
||||
if field not in entry:
|
||||
msg.fail(f"{path} does not contain the required '{field}' field.", exits=1)
|
||||
else:
|
||||
yield entry[field]
|
||||
|
||||
|
||||
def _stream_texts(paths: Iterable[Path]) -> Iterable[str]:
|
||||
"""
|
||||
Yields strings from text files in paths.
|
||||
"""
|
||||
for path in paths:
|
||||
with open(path, "r") as fin:
|
||||
text = fin.read()
|
||||
yield text
|
||||
|
||||
|
||||
@app.command("apply")
|
||||
def apply_cli(
|
||||
# fmt: off
|
||||
model: str = Arg(..., help="Model name or path"),
|
||||
data_path: Path = Arg(..., help=path_help, exists=True),
|
||||
output_file: Path = Arg(..., help=out_help, dir_okay=False),
|
||||
code_path: Optional[Path] = Opt(None, "--code", "-c", help=code_help),
|
||||
text_key: str = Opt("text", "--text-key", "-tk", help="Key containing text string for JSONL"),
|
||||
force_overwrite: bool = Opt(False, "--force", "-F", help="Force overwriting the output file"),
|
||||
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU."),
|
||||
batch_size: int = Opt(1, "--batch-size", "-b", help="Batch size."),
|
||||
n_process: int = Opt(1, "--n-process", "-n", help="number of processors to use.")
|
||||
):
|
||||
"""
|
||||
Apply a trained pipeline to documents to get predictions.
|
||||
Expects a loadable spaCy pipeline and path to the data, which
|
||||
can be a directory or a file.
|
||||
The data files can be provided in multiple formats:
|
||||
1. .spacy files
|
||||
2. .jsonl files with a specified "field" to read the text from.
|
||||
3. Files with any other extension are assumed to be containing
|
||||
a single document.
|
||||
DOCS: https://spacy.io/api/cli#apply
|
||||
"""
|
||||
data_path = ensure_path(data_path)
|
||||
output_file = ensure_path(output_file)
|
||||
code_path = ensure_path(code_path)
|
||||
if output_file.exists() and not force_overwrite:
|
||||
msg.fail(force_msg, exits=1)
|
||||
if not data_path.exists():
|
||||
msg.fail(f"Couldn't find data path: {data_path}", exits=1)
|
||||
import_code(code_path)
|
||||
setup_gpu(use_gpu)
|
||||
apply(data_path, output_file, model, text_key, batch_size, n_process)
|
||||
|
||||
|
||||
def apply(
|
||||
data_path: Path,
|
||||
output_file: Path,
|
||||
model: str,
|
||||
json_field: str,
|
||||
batch_size: int,
|
||||
n_process: int,
|
||||
):
|
||||
docbin = DocBin(store_user_data=True)
|
||||
paths = walk_directory(data_path)
|
||||
if len(paths) == 0:
|
||||
docbin.to_disk(output_file)
|
||||
msg.warn(
|
||||
"Did not find data to process,"
|
||||
f" {data_path} seems to be an empty directory."
|
||||
)
|
||||
return
|
||||
nlp = load_model(model)
|
||||
msg.good(f"Loaded model {model}")
|
||||
vocab = nlp.vocab
|
||||
streams: List[DocOrStrStream] = []
|
||||
text_files = []
|
||||
for path in paths:
|
||||
if path.suffix == ".spacy":
|
||||
streams.append(_stream_docbin(path, vocab))
|
||||
elif path.suffix == ".jsonl":
|
||||
streams.append(_stream_jsonl(path, json_field))
|
||||
else:
|
||||
text_files.append(path)
|
||||
if len(text_files) > 0:
|
||||
streams.append(_stream_texts(text_files))
|
||||
datagen = cast(DocOrStrStream, chain(*streams))
|
||||
for doc in tqdm.tqdm(nlp.pipe(datagen, batch_size=batch_size, n_process=n_process)):
|
||||
docbin.add(doc)
|
||||
if output_file.suffix == "":
|
||||
output_file = output_file.with_suffix(".spacy")
|
||||
docbin.to_disk(output_file)
|
|
@ -1,13 +1,20 @@
|
|||
from typing import Optional
|
||||
from pathlib import Path
|
||||
from wasabi import msg
|
||||
import typer
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import typer
|
||||
from wasabi import msg
|
||||
|
||||
from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
|
||||
from ._util import import_code
|
||||
from .. import util
|
||||
from ..util import get_sourced_components, load_model_from_config
|
||||
from ._util import (
|
||||
Arg,
|
||||
Opt,
|
||||
app,
|
||||
import_code,
|
||||
parse_config_overrides,
|
||||
show_validation_error,
|
||||
)
|
||||
|
||||
|
||||
@app.command(
|
||||
|
|
|
@ -0,0 +1,175 @@
|
|||
import random
|
||||
import time
|
||||
from itertools import islice
|
||||
from pathlib import Path
|
||||
from typing import Iterable, List, Optional
|
||||
|
||||
import numpy
|
||||
import typer
|
||||
from tqdm import tqdm
|
||||
from wasabi import msg
|
||||
|
||||
from .. import util
|
||||
from ..language import Language
|
||||
from ..tokens import Doc
|
||||
from ..training import Corpus
|
||||
from ._util import Arg, Opt, benchmark_cli, setup_gpu
|
||||
|
||||
|
||||
@benchmark_cli.command(
|
||||
"speed",
|
||||
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
|
||||
)
|
||||
def benchmark_speed_cli(
|
||||
# fmt: off
|
||||
ctx: typer.Context,
|
||||
model: str = Arg(..., help="Model name or path"),
|
||||
data_path: Path = Arg(..., help="Location of binary evaluation data in .spacy format", exists=True),
|
||||
batch_size: Optional[int] = Opt(None, "--batch-size", "-b", min=1, help="Override the pipeline batch size"),
|
||||
no_shuffle: bool = Opt(False, "--no-shuffle", help="Do not shuffle benchmark data"),
|
||||
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
|
||||
n_batches: int = Opt(50, "--batches", help="Minimum number of batches to benchmark", min=30,),
|
||||
warmup_epochs: int = Opt(3, "--warmup", "-w", min=0, help="Number of iterations over the data for warmup"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
Benchmark a pipeline. Expects a loadable spaCy pipeline and benchmark
|
||||
data in the binary .spacy format.
|
||||
"""
|
||||
setup_gpu(use_gpu=use_gpu, silent=False)
|
||||
|
||||
nlp = util.load_model(model)
|
||||
batch_size = batch_size if batch_size is not None else nlp.batch_size
|
||||
corpus = Corpus(data_path)
|
||||
docs = [eg.predicted for eg in corpus(nlp)]
|
||||
|
||||
if len(docs) == 0:
|
||||
msg.fail("Cannot benchmark speed using an empty corpus.", exits=1)
|
||||
|
||||
print(f"Warming up for {warmup_epochs} epochs...")
|
||||
warmup(nlp, docs, warmup_epochs, batch_size)
|
||||
|
||||
print()
|
||||
print(f"Benchmarking {n_batches} batches...")
|
||||
wps = benchmark(nlp, docs, n_batches, batch_size, not no_shuffle)
|
||||
|
||||
print()
|
||||
print_outliers(wps)
|
||||
print_mean_with_ci(wps)
|
||||
|
||||
|
||||
# Lowercased, behaves as a context manager function.
|
||||
class time_context:
|
||||
"""Register the running time of a context."""
|
||||
|
||||
def __enter__(self):
|
||||
self.start = time.perf_counter()
|
||||
return self
|
||||
|
||||
def __exit__(self, type, value, traceback):
|
||||
self.elapsed = time.perf_counter() - self.start
|
||||
|
||||
|
||||
class Quartiles:
|
||||
"""Calculate the q1, q2, q3 quartiles and the inter-quartile range (iqr)
|
||||
of a sample."""
|
||||
|
||||
q1: float
|
||||
q2: float
|
||||
q3: float
|
||||
iqr: float
|
||||
|
||||
def __init__(self, sample: numpy.ndarray) -> None:
|
||||
self.q1 = numpy.quantile(sample, 0.25)
|
||||
self.q2 = numpy.quantile(sample, 0.5)
|
||||
self.q3 = numpy.quantile(sample, 0.75)
|
||||
self.iqr = self.q3 - self.q1
|
||||
|
||||
|
||||
def annotate(
|
||||
nlp: Language, docs: List[Doc], batch_size: Optional[int]
|
||||
) -> numpy.ndarray:
|
||||
docs = nlp.pipe(tqdm(docs, unit="doc"), batch_size=batch_size)
|
||||
wps = []
|
||||
while True:
|
||||
with time_context() as elapsed:
|
||||
batch_docs = list(
|
||||
islice(docs, batch_size if batch_size else nlp.batch_size)
|
||||
)
|
||||
if len(batch_docs) == 0:
|
||||
break
|
||||
n_tokens = count_tokens(batch_docs)
|
||||
wps.append(n_tokens / elapsed.elapsed)
|
||||
|
||||
return numpy.array(wps)
|
||||
|
||||
|
||||
def benchmark(
|
||||
nlp: Language,
|
||||
docs: List[Doc],
|
||||
n_batches: int,
|
||||
batch_size: int,
|
||||
shuffle: bool,
|
||||
) -> numpy.ndarray:
|
||||
if shuffle:
|
||||
bench_docs = [
|
||||
nlp.make_doc(random.choice(docs).text)
|
||||
for _ in range(n_batches * batch_size)
|
||||
]
|
||||
else:
|
||||
bench_docs = [
|
||||
nlp.make_doc(docs[i % len(docs)].text)
|
||||
for i in range(n_batches * batch_size)
|
||||
]
|
||||
|
||||
return annotate(nlp, bench_docs, batch_size)
|
||||
|
||||
|
||||
def bootstrap(x, statistic=numpy.mean, iterations=10000) -> numpy.ndarray:
|
||||
"""Apply a statistic to repeated random samples of an array."""
|
||||
return numpy.fromiter(
|
||||
(
|
||||
statistic(numpy.random.choice(x, len(x), replace=True))
|
||||
for _ in range(iterations)
|
||||
),
|
||||
numpy.float64,
|
||||
)
|
||||
|
||||
|
||||
def count_tokens(docs: Iterable[Doc]) -> int:
|
||||
return sum(len(doc) for doc in docs)
|
||||
|
||||
|
||||
def print_mean_with_ci(sample: numpy.ndarray):
|
||||
mean = numpy.mean(sample)
|
||||
bootstrap_means = bootstrap(sample)
|
||||
bootstrap_means.sort()
|
||||
|
||||
# 95% confidence interval
|
||||
low = bootstrap_means[int(len(bootstrap_means) * 0.025)]
|
||||
high = bootstrap_means[int(len(bootstrap_means) * 0.975)]
|
||||
|
||||
print(f"Mean: {mean:.1f} words/s (95% CI: {low-mean:.1f} +{high-mean:.1f})")
|
||||
|
||||
|
||||
def print_outliers(sample: numpy.ndarray):
|
||||
quartiles = Quartiles(sample)
|
||||
|
||||
n_outliers = numpy.sum(
|
||||
(sample < (quartiles.q1 - 1.5 * quartiles.iqr))
|
||||
| (sample > (quartiles.q3 + 1.5 * quartiles.iqr))
|
||||
)
|
||||
n_extreme_outliers = numpy.sum(
|
||||
(sample < (quartiles.q1 - 3.0 * quartiles.iqr))
|
||||
| (sample > (quartiles.q3 + 3.0 * quartiles.iqr))
|
||||
)
|
||||
print(
|
||||
f"Outliers: {(100 * n_outliers) / len(sample):.1f}%, extreme outliers: {(100 * n_extreme_outliers) / len(sample)}%"
|
||||
)
|
||||
|
||||
|
||||
def warmup(
|
||||
nlp: Language, docs: List[Doc], warmup_epochs: int, batch_size: Optional[int]
|
||||
) -> numpy.ndarray:
|
||||
docs = warmup_epochs * docs
|
||||
return annotate(nlp, docs, batch_size)
|
|
@ -1,18 +1,22 @@
|
|||
from typing import Callable, Iterable, Mapping, Optional, Any, List, Union
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from wasabi import Printer
|
||||
import srsly
|
||||
import itertools
|
||||
import re
|
||||
import sys
|
||||
import itertools
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Iterable, Mapping, Optional, Union
|
||||
|
||||
import srsly
|
||||
from wasabi import Printer
|
||||
|
||||
from ._util import app, Arg, Opt
|
||||
from ..training import docs_to_json
|
||||
from ..tokens import Doc, DocBin
|
||||
from ..training.converters import iob_to_docs, conll_ner_to_docs, json_to_docs
|
||||
from ..training.converters import conllu_to_docs
|
||||
|
||||
from ..training import docs_to_json
|
||||
from ..training.converters import (
|
||||
conll_ner_to_docs,
|
||||
conllu_to_docs,
|
||||
iob_to_docs,
|
||||
json_to_docs,
|
||||
)
|
||||
from ._util import Arg, Opt, app, walk_directory
|
||||
|
||||
# Converters are matched by file extension except for ner/iob, which are
|
||||
# matched by file extension and content. To add a converter, add a new
|
||||
|
@ -28,6 +32,8 @@ CONVERTERS: Mapping[str, Callable[..., Iterable[Doc]]] = {
|
|||
"json": json_to_docs,
|
||||
}
|
||||
|
||||
AUTO = "auto"
|
||||
|
||||
|
||||
# File types that can be written to stdout
|
||||
FILE_TYPES_STDOUT = ("json",)
|
||||
|
@ -49,7 +55,7 @@ def convert_cli(
|
|||
model: Optional[str] = Opt(None, "--model", "--base", "-b", help="Trained spaCy pipeline for sentence segmentation to use as base (for --seg-sents)"),
|
||||
morphology: bool = Opt(False, "--morphology", "-m", help="Enable appending morphology to tags"),
|
||||
merge_subtokens: bool = Opt(False, "--merge-subtokens", "-T", help="Merge CoNLL-U subtokens"),
|
||||
converter: str = Opt("auto", "--converter", "-c", help=f"Converter: {tuple(CONVERTERS.keys())}"),
|
||||
converter: str = Opt(AUTO, "--converter", "-c", help=f"Converter: {tuple(CONVERTERS.keys())}"),
|
||||
ner_map: Optional[Path] = Opt(None, "--ner-map", "-nm", help="NER tag mapping (as JSON-encoded dict of entity types)", exists=True),
|
||||
lang: Optional[str] = Opt(None, "--lang", "-l", help="Language (if tokenizer required)"),
|
||||
concatenate: bool = Opt(None, "--concatenate", "-C", help="Concatenate output to a single file"),
|
||||
|
@ -70,8 +76,8 @@ def convert_cli(
|
|||
output_dir: Union[str, Path] = "-" if output_dir == Path("-") else output_dir
|
||||
silent = output_dir == "-"
|
||||
msg = Printer(no_print=silent)
|
||||
verify_cli_args(msg, input_path, output_dir, file_type.value, converter, ner_map)
|
||||
converter = _get_converter(msg, converter, input_path)
|
||||
verify_cli_args(msg, input_path, output_dir, file_type.value, converter, ner_map)
|
||||
convert(
|
||||
input_path,
|
||||
output_dir,
|
||||
|
@ -100,7 +106,7 @@ def convert(
|
|||
model: Optional[str] = None,
|
||||
morphology: bool = False,
|
||||
merge_subtokens: bool = False,
|
||||
converter: str = "auto",
|
||||
converter: str,
|
||||
ner_map: Optional[Path] = None,
|
||||
lang: Optional[str] = None,
|
||||
concatenate: bool = False,
|
||||
|
@ -189,33 +195,6 @@ def autodetect_ner_format(input_data: str) -> Optional[str]:
|
|||
return None
|
||||
|
||||
|
||||
def walk_directory(path: Path, converter: str) -> List[Path]:
|
||||
if not path.is_dir():
|
||||
return [path]
|
||||
paths = [path]
|
||||
locs = []
|
||||
seen = set()
|
||||
for path in paths:
|
||||
if str(path) in seen:
|
||||
continue
|
||||
seen.add(str(path))
|
||||
if path.parts[-1].startswith("."):
|
||||
continue
|
||||
elif path.is_dir():
|
||||
paths.extend(path.iterdir())
|
||||
elif converter == "json" and not path.parts[-1].endswith("json"):
|
||||
continue
|
||||
elif converter == "conll" and not path.parts[-1].endswith("conll"):
|
||||
continue
|
||||
elif converter == "iob" and not path.parts[-1].endswith("iob"):
|
||||
continue
|
||||
else:
|
||||
locs.append(path)
|
||||
# It's good to sort these, in case the ordering messes up cache.
|
||||
locs.sort()
|
||||
return locs
|
||||
|
||||
|
||||
def verify_cli_args(
|
||||
msg: Printer,
|
||||
input_path: Path,
|
||||
|
@ -239,18 +218,22 @@ def verify_cli_args(
|
|||
input_locs = walk_directory(input_path, converter)
|
||||
if len(input_locs) == 0:
|
||||
msg.fail("No input files in directory", input_path, exits=1)
|
||||
file_types = list(set([loc.suffix[1:] for loc in input_locs]))
|
||||
if converter == "auto" and len(file_types) >= 2:
|
||||
file_types_str = ",".join(file_types)
|
||||
msg.fail("All input files must be same type", file_types_str, exits=1)
|
||||
if converter != "auto" and converter not in CONVERTERS:
|
||||
if converter not in CONVERTERS:
|
||||
msg.fail(f"Can't find converter for {converter}", exits=1)
|
||||
|
||||
|
||||
def _get_converter(msg, converter, input_path: Path):
|
||||
if input_path.is_dir():
|
||||
input_path = walk_directory(input_path, converter)[0]
|
||||
if converter == "auto":
|
||||
if converter == AUTO:
|
||||
input_locs = walk_directory(input_path, suffix=None)
|
||||
file_types = list(set([loc.suffix[1:] for loc in input_locs]))
|
||||
if len(file_types) >= 2:
|
||||
file_types_str = ",".join(file_types)
|
||||
msg.fail("All input files must be same type", file_types_str, exits=1)
|
||||
input_path = input_locs[0]
|
||||
else:
|
||||
input_path = walk_directory(input_path, suffix=converter)[0]
|
||||
if converter == AUTO:
|
||||
converter = input_path.suffix[1:]
|
||||
if converter == "ner" or converter == "iob":
|
||||
with input_path.open(encoding="utf8") as file_:
|
||||
|
|
|
@ -1,15 +1,22 @@
|
|||
from typing import Optional, Dict, Any, Union, List
|
||||
from pathlib import Path
|
||||
from wasabi import msg, table
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
import typer
|
||||
from thinc.api import Config
|
||||
from thinc.config import VARIABLE_RE
|
||||
import typer
|
||||
from wasabi import msg, table
|
||||
|
||||
from ._util import Arg, Opt, show_validation_error, parse_config_overrides
|
||||
from ._util import import_code, debug_cli
|
||||
from .. import util
|
||||
from ..schemas import ConfigSchemaInit, ConfigSchemaTraining
|
||||
from ..util import registry
|
||||
from .. import util
|
||||
from ._util import (
|
||||
Arg,
|
||||
Opt,
|
||||
debug_cli,
|
||||
import_code,
|
||||
parse_config_overrides,
|
||||
show_validation_error,
|
||||
)
|
||||
|
||||
|
||||
@debug_cli.command(
|
||||
|
|
|
@ -1,28 +1,49 @@
|
|||
from typing import Any, Dict, Iterable, List, Optional, Sequence, Set, Tuple, Union
|
||||
from typing import cast, overload
|
||||
from pathlib import Path
|
||||
from collections import Counter
|
||||
import sys
|
||||
import srsly
|
||||
from wasabi import Printer, MESSAGES, msg
|
||||
import typer
|
||||
import math
|
||||
import sys
|
||||
from collections import Counter
|
||||
from pathlib import Path
|
||||
from typing import (
|
||||
Any,
|
||||
Dict,
|
||||
Iterable,
|
||||
List,
|
||||
Optional,
|
||||
Sequence,
|
||||
Set,
|
||||
Tuple,
|
||||
Union,
|
||||
cast,
|
||||
overload,
|
||||
)
|
||||
|
||||
from ._util import app, Arg, Opt, show_validation_error, parse_config_overrides
|
||||
from ._util import import_code, debug_cli, _format_number
|
||||
from ..training import Example, remove_bilu_prefix
|
||||
from ..training.initialize import get_sourced_components
|
||||
from ..schemas import ConfigSchemaTraining
|
||||
import numpy
|
||||
import srsly
|
||||
import typer
|
||||
from wasabi import MESSAGES, Printer, msg
|
||||
|
||||
from .. import util
|
||||
from ..compat import Literal
|
||||
from ..language import Language
|
||||
from ..morphology import Morphology
|
||||
from ..pipeline import Morphologizer, SpanCategorizer, TrainablePipe
|
||||
from ..pipeline._edit_tree_internals.edit_trees import EditTrees
|
||||
from ..pipeline._parser_internals import nonproj
|
||||
from ..pipeline._parser_internals.nonproj import DELIMITER
|
||||
from ..pipeline import Morphologizer, SpanCategorizer
|
||||
from ..morphology import Morphology
|
||||
from ..language import Language
|
||||
from ..schemas import ConfigSchemaTraining
|
||||
from ..training import Example, remove_bilu_prefix
|
||||
from ..training.initialize import get_sourced_components
|
||||
from ..util import registry, resolve_dot_names
|
||||
from ..compat import Literal
|
||||
from ..vectors import Mode as VectorsMode
|
||||
from .. import util
|
||||
|
||||
from ._util import (
|
||||
Arg,
|
||||
Opt,
|
||||
_format_number,
|
||||
app,
|
||||
debug_cli,
|
||||
import_code,
|
||||
parse_config_overrides,
|
||||
show_validation_error,
|
||||
)
|
||||
|
||||
# Minimum number of expected occurrences of NER label in data to train new label
|
||||
NEW_LABEL_THRESHOLD = 50
|
||||
|
@ -209,7 +230,7 @@ def debug_data(
|
|||
else:
|
||||
msg.info("No word vectors present in the package")
|
||||
|
||||
if "spancat" in factory_names:
|
||||
if "spancat" in factory_names or "spancat_singlelabel" in factory_names:
|
||||
model_labels_spancat = _get_labels_from_spancat(nlp)
|
||||
has_low_data_warning = False
|
||||
has_no_neg_warning = False
|
||||
|
@ -334,7 +355,7 @@ def debug_data(
|
|||
show=verbose,
|
||||
)
|
||||
else:
|
||||
msg.good("Examples without ocurrences available for all labels")
|
||||
msg.good("Examples without occurrences available for all labels")
|
||||
|
||||
if "ner" in factory_names:
|
||||
# Get all unique NER labels present in the data
|
||||
|
@ -519,9 +540,13 @@ def debug_data(
|
|||
|
||||
if "tagger" in factory_names:
|
||||
msg.divider("Part-of-speech Tagging")
|
||||
label_list = [label for label in gold_train_data["tags"]]
|
||||
model_labels = _get_labels_from_model(nlp, "tagger")
|
||||
label_list, counts = zip(*gold_train_data["tags"].items())
|
||||
msg.info(f"{len(label_list)} label(s) in train data")
|
||||
p = numpy.array(counts)
|
||||
p = p / p.sum()
|
||||
norm_entropy = (-p * numpy.log2(p)).sum() / numpy.log2(len(label_list))
|
||||
msg.info(f"{norm_entropy} is the normalised label entropy")
|
||||
model_labels = _get_labels_from_model(nlp, "tagger")
|
||||
labels = set(label_list)
|
||||
missing_labels = model_labels - labels
|
||||
if missing_labels:
|
||||
|
@ -670,6 +695,59 @@ def debug_data(
|
|||
f"Found {gold_train_data['n_cycles']} projectivized train sentence(s) with cycles"
|
||||
)
|
||||
|
||||
if "trainable_lemmatizer" in factory_names:
|
||||
msg.divider("Trainable Lemmatizer")
|
||||
trees_train: Set[str] = gold_train_data["lemmatizer_trees"]
|
||||
trees_dev: Set[str] = gold_dev_data["lemmatizer_trees"]
|
||||
# This is necessary context when someone is attempting to interpret whether the
|
||||
# number of trees exclusively in the dev set is meaningful.
|
||||
msg.info(f"{len(trees_train)} lemmatizer trees generated from training data")
|
||||
msg.info(f"{len(trees_dev)} lemmatizer trees generated from dev data")
|
||||
dev_not_train = trees_dev - trees_train
|
||||
|
||||
if len(dev_not_train) != 0:
|
||||
pct = len(dev_not_train) / len(trees_dev)
|
||||
msg.info(
|
||||
f"{len(dev_not_train)} lemmatizer trees ({pct*100:.1f}% of dev trees)"
|
||||
" were found exclusively in the dev data."
|
||||
)
|
||||
else:
|
||||
# Would we ever expect this case? It seems like it would be pretty rare,
|
||||
# and we might actually want a warning?
|
||||
msg.info("All trees in dev data present in training data.")
|
||||
|
||||
if gold_train_data["n_low_cardinality_lemmas"] > 0:
|
||||
n = gold_train_data["n_low_cardinality_lemmas"]
|
||||
msg.warn(f"{n} training docs with 0 or 1 unique lemmas.")
|
||||
|
||||
if gold_dev_data["n_low_cardinality_lemmas"] > 0:
|
||||
n = gold_dev_data["n_low_cardinality_lemmas"]
|
||||
msg.warn(f"{n} dev docs with 0 or 1 unique lemmas.")
|
||||
|
||||
if gold_train_data["no_lemma_annotations"] > 0:
|
||||
n = gold_train_data["no_lemma_annotations"]
|
||||
msg.warn(f"{n} training docs with no lemma annotations.")
|
||||
else:
|
||||
msg.good("All training docs have lemma annotations.")
|
||||
|
||||
if gold_dev_data["no_lemma_annotations"] > 0:
|
||||
n = gold_dev_data["no_lemma_annotations"]
|
||||
msg.warn(f"{n} dev docs with no lemma annotations.")
|
||||
else:
|
||||
msg.good("All dev docs have lemma annotations.")
|
||||
|
||||
if gold_train_data["partial_lemma_annotations"] > 0:
|
||||
n = gold_train_data["partial_lemma_annotations"]
|
||||
msg.info(f"{n} training docs with partial lemma annotations.")
|
||||
else:
|
||||
msg.good("All training docs have complete lemma annotations.")
|
||||
|
||||
if gold_dev_data["partial_lemma_annotations"] > 0:
|
||||
n = gold_dev_data["partial_lemma_annotations"]
|
||||
msg.info(f"{n} dev docs with partial lemma annotations.")
|
||||
else:
|
||||
msg.good("All dev docs have complete lemma annotations.")
|
||||
|
||||
msg.divider("Summary")
|
||||
good_counts = msg.counts[MESSAGES.GOOD]
|
||||
warn_counts = msg.counts[MESSAGES.WARN]
|
||||
|
@ -731,7 +809,13 @@ def _compile_gold(
|
|||
"n_cats_multilabel": 0,
|
||||
"n_cats_bad_values": 0,
|
||||
"texts": set(),
|
||||
"lemmatizer_trees": set(),
|
||||
"no_lemma_annotations": 0,
|
||||
"partial_lemma_annotations": 0,
|
||||
"n_low_cardinality_lemmas": 0,
|
||||
}
|
||||
if "trainable_lemmatizer" in factory_names:
|
||||
trees = EditTrees(nlp.vocab.strings)
|
||||
for eg in examples:
|
||||
gold = eg.reference
|
||||
doc = eg.predicted
|
||||
|
@ -764,7 +848,7 @@ def _compile_gold(
|
|||
data["boundary_cross_ents"] += 1
|
||||
elif label == "-":
|
||||
data["ner"]["-"] += 1
|
||||
if "spancat" in factory_names:
|
||||
if "spancat" in factory_names or "spancat_singlelabel" in factory_names:
|
||||
for spans_key in list(eg.reference.spans.keys()):
|
||||
# Obtain the span frequency
|
||||
if spans_key not in data["spancat"]:
|
||||
|
@ -861,6 +945,25 @@ def _compile_gold(
|
|||
data["n_nonproj"] += 1
|
||||
if nonproj.contains_cycle(aligned_heads):
|
||||
data["n_cycles"] += 1
|
||||
if "trainable_lemmatizer" in factory_names:
|
||||
# from EditTreeLemmatizer._labels_from_data
|
||||
if all(token.lemma == 0 for token in gold):
|
||||
data["no_lemma_annotations"] += 1
|
||||
continue
|
||||
if any(token.lemma == 0 for token in gold):
|
||||
data["partial_lemma_annotations"] += 1
|
||||
lemma_set = set()
|
||||
for token in gold:
|
||||
if token.lemma != 0:
|
||||
lemma_set.add(token.lemma)
|
||||
tree_id = trees.add(token.text, token.lemma_)
|
||||
tree_str = trees.tree_to_str(tree_id)
|
||||
data["lemmatizer_trees"].add(tree_str)
|
||||
# We want to identify cases where lemmas aren't assigned
|
||||
# or are all assigned the same value, as this would indicate
|
||||
# an issue since we're expecting a large set of lemmas
|
||||
if len(lemma_set) < 2 and len(gold) > 1:
|
||||
data["n_low_cardinality_lemmas"] += 1
|
||||
return data
|
||||
|
||||
|
||||
|
@ -934,6 +1037,7 @@ def _get_labels_from_model(nlp: Language, factory_name: str) -> Set[str]:
|
|||
labels: Set[str] = set()
|
||||
for pipe_name in pipe_names:
|
||||
pipe = nlp.get_pipe(pipe_name)
|
||||
assert isinstance(pipe, TrainablePipe)
|
||||
labels.update(pipe.labels)
|
||||
return labels
|
||||
|
||||
|
@ -942,7 +1046,7 @@ def _get_labels_from_spancat(nlp: Language) -> Dict[str, Set[str]]:
|
|||
pipe_names = [
|
||||
pipe_name
|
||||
for pipe_name in nlp.pipe_names
|
||||
if nlp.get_pipe_meta(pipe_name).factory == "spancat"
|
||||
if nlp.get_pipe_meta(pipe_name).factory in ("spancat", "spancat_singlelabel")
|
||||
]
|
||||
labels: Dict[str, Set[str]] = {}
|
||||
for pipe_name in pipe_names:
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import typer
|
||||
from wasabi import Printer, diff_strings, MarkdownRenderer
|
||||
from pathlib import Path
|
||||
from thinc.api import Config
|
||||
from wasabi import MarkdownRenderer, Printer, diff_strings
|
||||
|
||||
from ._util import debug_cli, Arg, Opt, show_validation_error, parse_config_overrides
|
||||
from ..util import load_config
|
||||
from .init_config import init_config, Optimizations
|
||||
from ._util import Arg, Opt, debug_cli, parse_config_overrides, show_validation_error
|
||||
from .init_config import Optimizations, init_config
|
||||
|
||||
|
||||
@debug_cli.command(
|
||||
|
|
|
@ -1,19 +1,32 @@
|
|||
from typing import Dict, Any, Optional
|
||||
from pathlib import Path
|
||||
import itertools
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import typer
|
||||
from thinc.api import (
|
||||
Model,
|
||||
data_validation,
|
||||
fix_random_seed,
|
||||
set_dropout_rate,
|
||||
set_gpu_allocator,
|
||||
)
|
||||
from wasabi import msg
|
||||
|
||||
from spacy.training import Example
|
||||
from spacy.util import resolve_dot_names
|
||||
from wasabi import msg
|
||||
from thinc.api import fix_random_seed, set_dropout_rate
|
||||
from thinc.api import Model, data_validation, set_gpu_allocator
|
||||
import typer
|
||||
|
||||
from ._util import Arg, Opt, debug_cli, show_validation_error
|
||||
from ._util import parse_config_overrides, string_to_list, setup_gpu
|
||||
from .. import util
|
||||
from ..schemas import ConfigSchemaTraining
|
||||
from ..util import registry
|
||||
from .. import util
|
||||
from ._util import (
|
||||
Arg,
|
||||
Opt,
|
||||
debug_cli,
|
||||
parse_config_overrides,
|
||||
setup_gpu,
|
||||
show_validation_error,
|
||||
string_to_list,
|
||||
)
|
||||
|
||||
|
||||
@debug_cli.command(
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
from typing import Optional, Sequence
|
||||
import requests
|
||||
import sys
|
||||
from wasabi import msg
|
||||
import typer
|
||||
from typing import Optional, Sequence
|
||||
|
||||
import requests
|
||||
import typer
|
||||
from wasabi import msg
|
||||
|
||||
from ._util import app, Arg, Opt, WHEEL_SUFFIX, SDIST_SUFFIX
|
||||
from .. import about
|
||||
from ..util import is_package, get_minor_version, run_command
|
||||
from ..util import is_prerelease_version
|
||||
from ..errors import OLD_MODEL_SHORTCUTS
|
||||
from ..util import get_minor_version, is_package, is_prerelease_version, run_command
|
||||
from ._util import SDIST_SUFFIX, WHEEL_SUFFIX, Arg, Opt, app
|
||||
|
||||
|
||||
@app.command(
|
||||
|
@ -81,11 +81,8 @@ def download(
|
|||
|
||||
def get_model_filename(model_name: str, version: str, sdist: bool = False) -> str:
|
||||
dl_tpl = "{m}-{v}/{m}-{v}{s}"
|
||||
egg_tpl = "#egg={m}=={v}"
|
||||
suffix = SDIST_SUFFIX if sdist else WHEEL_SUFFIX
|
||||
filename = dl_tpl.format(m=model_name, v=version, s=suffix)
|
||||
if sdist:
|
||||
filename += egg_tpl.format(m=model_name, v=version)
|
||||
return filename
|
||||
|
||||
|
||||
|
|
|
@ -1,18 +1,21 @@
|
|||
from typing import Optional, List, Dict, Any, Union
|
||||
from wasabi import Printer
|
||||
from pathlib import Path
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
import srsly
|
||||
from thinc.api import fix_random_seed
|
||||
from wasabi import Printer
|
||||
|
||||
from ..training import Corpus
|
||||
from ..tokens import Doc
|
||||
from ._util import app, Arg, Opt, setup_gpu, import_code
|
||||
from .. import displacy, util
|
||||
from ..scorer import Scorer
|
||||
from .. import util
|
||||
from .. import displacy
|
||||
from ..tokens import Doc
|
||||
from ..training import Corpus
|
||||
from ._util import Arg, Opt, app, benchmark_cli, import_code, setup_gpu
|
||||
|
||||
|
||||
@benchmark_cli.command(
|
||||
"accuracy",
|
||||
)
|
||||
@app.command("evaluate")
|
||||
def evaluate_cli(
|
||||
# fmt: off
|
||||
|
@ -24,6 +27,7 @@ def evaluate_cli(
|
|||
gold_preproc: bool = Opt(False, "--gold-preproc", "-G", help="Use gold preprocessing"),
|
||||
displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False),
|
||||
displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"),
|
||||
per_component: bool = Opt(False, "--per-component", "-P", help="Return scores per component, only applicable when an output JSON file is specified."),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
|
@ -36,7 +40,7 @@ def evaluate_cli(
|
|||
dependency parses in a HTML file, set as output directory as the
|
||||
displacy_path argument.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#evaluate
|
||||
DOCS: https://spacy.io/api/cli#benchmark-accuracy
|
||||
"""
|
||||
import_code(code_path)
|
||||
evaluate(
|
||||
|
@ -47,6 +51,7 @@ def evaluate_cli(
|
|||
gold_preproc=gold_preproc,
|
||||
displacy_path=displacy_path,
|
||||
displacy_limit=displacy_limit,
|
||||
per_component=per_component,
|
||||
silent=False,
|
||||
)
|
||||
|
||||
|
@ -61,6 +66,7 @@ def evaluate(
|
|||
displacy_limit: int = 25,
|
||||
silent: bool = True,
|
||||
spans_key: str = "sc",
|
||||
per_component: bool = False,
|
||||
) -> Dict[str, Any]:
|
||||
msg = Printer(no_print=silent, pretty=not silent)
|
||||
fix_random_seed()
|
||||
|
@ -75,50 +81,61 @@ def evaluate(
|
|||
corpus = Corpus(data_path, gold_preproc=gold_preproc)
|
||||
nlp = util.load_model(model)
|
||||
dev_dataset = list(corpus(nlp))
|
||||
scores = nlp.evaluate(dev_dataset)
|
||||
metrics = {
|
||||
"TOK": "token_acc",
|
||||
"TAG": "tag_acc",
|
||||
"POS": "pos_acc",
|
||||
"MORPH": "morph_acc",
|
||||
"LEMMA": "lemma_acc",
|
||||
"UAS": "dep_uas",
|
||||
"LAS": "dep_las",
|
||||
"NER P": "ents_p",
|
||||
"NER R": "ents_r",
|
||||
"NER F": "ents_f",
|
||||
"TEXTCAT": "cats_score",
|
||||
"SENT P": "sents_p",
|
||||
"SENT R": "sents_r",
|
||||
"SENT F": "sents_f",
|
||||
"SPAN P": f"spans_{spans_key}_p",
|
||||
"SPAN R": f"spans_{spans_key}_r",
|
||||
"SPAN F": f"spans_{spans_key}_f",
|
||||
"SPEED": "speed",
|
||||
}
|
||||
results = {}
|
||||
data = {}
|
||||
for metric, key in metrics.items():
|
||||
if key in scores:
|
||||
if key == "cats_score":
|
||||
metric = metric + " (" + scores.get("cats_score_desc", "unk") + ")"
|
||||
if isinstance(scores[key], (int, float)):
|
||||
if key == "speed":
|
||||
results[metric] = f"{scores[key]:.0f}"
|
||||
scores = nlp.evaluate(dev_dataset, per_component=per_component)
|
||||
if per_component:
|
||||
data = scores
|
||||
if output is None:
|
||||
msg.warn(
|
||||
"The per-component option is enabled but there is no output JSON file provided to save the scores to."
|
||||
)
|
||||
else:
|
||||
msg.info("Per-component scores will be saved to output JSON file.")
|
||||
else:
|
||||
metrics = {
|
||||
"TOK": "token_acc",
|
||||
"TAG": "tag_acc",
|
||||
"POS": "pos_acc",
|
||||
"MORPH": "morph_acc",
|
||||
"LEMMA": "lemma_acc",
|
||||
"UAS": "dep_uas",
|
||||
"LAS": "dep_las",
|
||||
"NER P": "ents_p",
|
||||
"NER R": "ents_r",
|
||||
"NER F": "ents_f",
|
||||
"TEXTCAT": "cats_score",
|
||||
"SENT P": "sents_p",
|
||||
"SENT R": "sents_r",
|
||||
"SENT F": "sents_f",
|
||||
"SPAN P": f"spans_{spans_key}_p",
|
||||
"SPAN R": f"spans_{spans_key}_r",
|
||||
"SPAN F": f"spans_{spans_key}_f",
|
||||
"SPEED": "speed",
|
||||
}
|
||||
results = {}
|
||||
data = {}
|
||||
for metric, key in metrics.items():
|
||||
if key in scores:
|
||||
if key == "cats_score":
|
||||
metric = metric + " (" + scores.get("cats_score_desc", "unk") + ")"
|
||||
if isinstance(scores[key], (int, float)):
|
||||
if key == "speed":
|
||||
results[metric] = f"{scores[key]:.0f}"
|
||||
else:
|
||||
results[metric] = f"{scores[key]*100:.2f}"
|
||||
else:
|
||||
results[metric] = f"{scores[key]*100:.2f}"
|
||||
else:
|
||||
results[metric] = "-"
|
||||
data[re.sub(r"[\s/]", "_", key.lower())] = scores[key]
|
||||
results[metric] = "-"
|
||||
data[re.sub(r"[\s/]", "_", key.lower())] = scores[key]
|
||||
|
||||
msg.table(results, title="Results")
|
||||
data = handle_scores_per_type(scores, data, spans_key=spans_key, silent=silent)
|
||||
msg.table(results, title="Results")
|
||||
data = handle_scores_per_type(scores, data, spans_key=spans_key, silent=silent)
|
||||
|
||||
if displacy_path:
|
||||
factory_names = [nlp.get_pipe_meta(pipe).factory for pipe in nlp.pipe_names]
|
||||
docs = list(nlp.pipe(ex.reference.text for ex in dev_dataset[:displacy_limit]))
|
||||
render_deps = "parser" in factory_names
|
||||
render_ents = "ner" in factory_names
|
||||
render_spans = "spancat" in factory_names
|
||||
|
||||
render_parses(
|
||||
docs,
|
||||
displacy_path,
|
||||
|
@ -126,6 +143,7 @@ def evaluate(
|
|||
limit=displacy_limit,
|
||||
deps=render_deps,
|
||||
ents=render_ents,
|
||||
spans=render_spans,
|
||||
)
|
||||
msg.good(f"Generated {displacy_limit} parses as HTML", displacy_path)
|
||||
|
||||
|
@ -179,6 +197,7 @@ def render_parses(
|
|||
limit: int = 250,
|
||||
deps: bool = True,
|
||||
ents: bool = True,
|
||||
spans: bool = True,
|
||||
):
|
||||
docs[0].user_data["title"] = model_name
|
||||
if ents:
|
||||
|
@ -192,6 +211,11 @@ def render_parses(
|
|||
with (output_path / "parses.html").open("w", encoding="utf8") as file_:
|
||||
file_.write(html)
|
||||
|
||||
if spans:
|
||||
html = displacy.render(docs[:limit], style="span", page=True)
|
||||
with (output_path / "spans.html").open("w", encoding="utf8") as file_:
|
||||
file_.write(html)
|
||||
|
||||
|
||||
def print_prf_per_type(
|
||||
msg: Printer, scores: Dict[str, Dict[str, float]], name: str, type: str
|
||||
|
|
|
@ -0,0 +1,233 @@
|
|||
import functools
|
||||
import logging
|
||||
import operator
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import numpy
|
||||
import wasabi.tables
|
||||
|
||||
from .. import util
|
||||
from ..errors import Errors
|
||||
from ..pipeline import MultiLabel_TextCategorizer, TextCategorizer
|
||||
from ..training import Corpus
|
||||
from ._util import Arg, Opt, app, import_code, setup_gpu
|
||||
|
||||
_DEFAULTS = {
|
||||
"n_trials": 11,
|
||||
"use_gpu": -1,
|
||||
"gold_preproc": False,
|
||||
}
|
||||
|
||||
|
||||
@app.command(
|
||||
"find-threshold",
|
||||
context_settings={"allow_extra_args": False, "ignore_unknown_options": True},
|
||||
)
|
||||
def find_threshold_cli(
|
||||
# fmt: off
|
||||
model: str = Arg(..., help="Model name or path"),
|
||||
data_path: Path = Arg(..., help="Location of binary evaluation data in .spacy format", exists=True),
|
||||
pipe_name: str = Arg(..., help="Name of pipe to examine thresholds for"),
|
||||
threshold_key: str = Arg(..., help="Key of threshold attribute in component's configuration"),
|
||||
scores_key: str = Arg(..., help="Metric to optimize"),
|
||||
n_trials: int = Opt(_DEFAULTS["n_trials"], "--n_trials", "-n", help="Number of trials to determine optimal thresholds"),
|
||||
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
|
||||
use_gpu: int = Opt(_DEFAULTS["use_gpu"], "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
|
||||
gold_preproc: bool = Opt(_DEFAULTS["gold_preproc"], "--gold-preproc", "-G", help="Use gold preprocessing"),
|
||||
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
Runs prediction trials for a trained model with varying tresholds to maximize
|
||||
the specified metric. The search space for the threshold is traversed linearly
|
||||
from 0 to 1 in `n_trials` steps. Results are displayed in a table on `stdout`
|
||||
(the corresponding API call to `spacy.cli.find_threshold.find_threshold()`
|
||||
returns all results).
|
||||
|
||||
This is applicable only for components whose predictions are influenced by
|
||||
thresholds - e.g. `textcat_multilabel` and `spancat`, but not `textcat`. Note
|
||||
that the full path to the corresponding threshold attribute in the config has to
|
||||
be provided.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#find-threshold
|
||||
"""
|
||||
|
||||
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
|
||||
import_code(code_path)
|
||||
find_threshold(
|
||||
model=model,
|
||||
data_path=data_path,
|
||||
pipe_name=pipe_name,
|
||||
threshold_key=threshold_key,
|
||||
scores_key=scores_key,
|
||||
n_trials=n_trials,
|
||||
use_gpu=use_gpu,
|
||||
gold_preproc=gold_preproc,
|
||||
silent=False,
|
||||
)
|
||||
|
||||
|
||||
def find_threshold(
|
||||
model: str,
|
||||
data_path: Path,
|
||||
pipe_name: str,
|
||||
threshold_key: str,
|
||||
scores_key: str,
|
||||
*,
|
||||
n_trials: int = _DEFAULTS["n_trials"], # type: ignore
|
||||
use_gpu: int = _DEFAULTS["use_gpu"], # type: ignore
|
||||
gold_preproc: bool = _DEFAULTS["gold_preproc"], # type: ignore
|
||||
silent: bool = True,
|
||||
) -> Tuple[float, float, Dict[float, float]]:
|
||||
"""
|
||||
Runs prediction trials for models with varying tresholds to maximize the specified metric.
|
||||
model (Union[str, Path]): Pipeline to evaluate. Can be a package or a path to a data directory.
|
||||
data_path (Path): Path to file with DocBin with docs to use for threshold search.
|
||||
pipe_name (str): Name of pipe to examine thresholds for.
|
||||
threshold_key (str): Key of threshold attribute in component's configuration.
|
||||
scores_key (str): Name of score to metric to optimize.
|
||||
n_trials (int): Number of trials to determine optimal thresholds.
|
||||
use_gpu (int): GPU ID or -1 for CPU.
|
||||
gold_preproc (bool): Whether to use gold preprocessing. Gold preprocessing helps the annotations align to the
|
||||
tokenization, and may result in sequences of more consistent length. However, it may reduce runtime accuracy due
|
||||
to train/test skew.
|
||||
silent (bool): Whether to print non-error-related output to stdout.
|
||||
RETURNS (Tuple[float, float, Dict[float, float]]): Best found threshold, the corresponding score, scores for all
|
||||
evaluated thresholds.
|
||||
"""
|
||||
|
||||
setup_gpu(use_gpu, silent=silent)
|
||||
data_path = util.ensure_path(data_path)
|
||||
if not data_path.exists():
|
||||
wasabi.msg.fail("Evaluation data not found", data_path, exits=1)
|
||||
nlp = util.load_model(model)
|
||||
|
||||
if pipe_name not in nlp.component_names:
|
||||
raise AttributeError(
|
||||
Errors.E001.format(name=pipe_name, opts=nlp.component_names)
|
||||
)
|
||||
pipe = nlp.get_pipe(pipe_name)
|
||||
if not hasattr(pipe, "scorer"):
|
||||
raise AttributeError(Errors.E1045)
|
||||
|
||||
if type(pipe) == TextCategorizer:
|
||||
wasabi.msg.warn(
|
||||
"The `textcat` component doesn't use a threshold as it's not applicable to the concept of "
|
||||
"exclusive classes. All thresholds will yield the same results."
|
||||
)
|
||||
|
||||
if not silent:
|
||||
wasabi.msg.info(
|
||||
title=f"Optimizing for {scores_key} for component '{pipe_name}' with {n_trials} "
|
||||
f"trials."
|
||||
)
|
||||
|
||||
# Load evaluation corpus.
|
||||
corpus = Corpus(data_path, gold_preproc=gold_preproc)
|
||||
dev_dataset = list(corpus(nlp))
|
||||
config_keys = threshold_key.split(".")
|
||||
|
||||
def set_nested_item(
|
||||
config: Dict[str, Any], keys: List[str], value: float
|
||||
) -> Dict[str, Any]:
|
||||
"""Set item in nested dictionary. Adapted from https://stackoverflow.com/a/54138200.
|
||||
config (Dict[str, Any]): Configuration dictionary.
|
||||
keys (List[Any]): Path to value to set.
|
||||
value (float): Value to set.
|
||||
RETURNS (Dict[str, Any]): Updated dictionary.
|
||||
"""
|
||||
functools.reduce(operator.getitem, keys[:-1], config)[keys[-1]] = value
|
||||
return config
|
||||
|
||||
def filter_config(
|
||||
config: Dict[str, Any], keys: List[str], full_key: str
|
||||
) -> Dict[str, Any]:
|
||||
"""Filters provided config dictionary so that only the specified keys path remains.
|
||||
config (Dict[str, Any]): Configuration dictionary.
|
||||
keys (List[Any]): Path to value to set.
|
||||
full_key (str): Full user-specified key.
|
||||
RETURNS (Dict[str, Any]): Filtered dictionary.
|
||||
"""
|
||||
if keys[0] not in config:
|
||||
wasabi.msg.fail(
|
||||
title=f"Failed to look up `{full_key}` in config: sub-key {[keys[0]]} not found.",
|
||||
text=f"Make sure you specified {[keys[0]]} correctly. The following sub-keys are available instead: "
|
||||
f"{list(config.keys())}",
|
||||
exits=1,
|
||||
)
|
||||
return {
|
||||
keys[0]: filter_config(config[keys[0]], keys[1:], full_key)
|
||||
if len(keys) > 1
|
||||
else config[keys[0]]
|
||||
}
|
||||
|
||||
# Evaluate with varying threshold values.
|
||||
scores: Dict[float, float] = {}
|
||||
config_keys_full = ["components", pipe_name, *config_keys]
|
||||
table_col_widths = (10, 10)
|
||||
thresholds = numpy.linspace(0, 1, n_trials)
|
||||
print(wasabi.tables.row(["Threshold", f"{scores_key}"], widths=table_col_widths))
|
||||
for threshold in thresholds:
|
||||
# Reload pipeline with overrides specifying the new threshold.
|
||||
nlp = util.load_model(
|
||||
model,
|
||||
config=set_nested_item(
|
||||
filter_config(
|
||||
nlp.config, config_keys_full, ".".join(config_keys_full)
|
||||
).copy(),
|
||||
config_keys_full,
|
||||
threshold,
|
||||
),
|
||||
)
|
||||
if hasattr(pipe, "cfg"):
|
||||
setattr(
|
||||
nlp.get_pipe(pipe_name),
|
||||
"cfg",
|
||||
set_nested_item(getattr(pipe, "cfg"), config_keys, threshold),
|
||||
)
|
||||
|
||||
eval_scores = nlp.evaluate(dev_dataset)
|
||||
if scores_key not in eval_scores:
|
||||
wasabi.msg.fail(
|
||||
title=f"Failed to look up score `{scores_key}` in evaluation results.",
|
||||
text=f"Make sure you specified the correct value for `scores_key`. The following scores are "
|
||||
f"available: {list(eval_scores.keys())}",
|
||||
exits=1,
|
||||
)
|
||||
scores[threshold] = eval_scores[scores_key]
|
||||
|
||||
if not isinstance(scores[threshold], (float, int)):
|
||||
wasabi.msg.fail(
|
||||
f"Returned score for key '{scores_key}' is not numeric. Threshold optimization only works for numeric "
|
||||
f"scores.",
|
||||
exits=1,
|
||||
)
|
||||
print(
|
||||
wasabi.row(
|
||||
[round(threshold, 3), round(scores[threshold], 3)],
|
||||
widths=table_col_widths,
|
||||
)
|
||||
)
|
||||
|
||||
best_threshold = max(scores.keys(), key=(lambda key: scores[key]))
|
||||
|
||||
# If all scores are identical, emit warning.
|
||||
if len(set(scores.values())) == 1:
|
||||
wasabi.msg.warn(
|
||||
title="All scores are identical. Verify that all settings are correct.",
|
||||
text=""
|
||||
if (
|
||||
not isinstance(pipe, MultiLabel_TextCategorizer)
|
||||
or scores_key in ("cats_macro_f", "cats_micro_f")
|
||||
)
|
||||
else "Use `cats_macro_f` or `cats_micro_f` when optimizing the threshold for `textcat_multilabel`.",
|
||||
)
|
||||
|
||||
else:
|
||||
if not silent:
|
||||
print(
|
||||
f"\nBest threshold: {round(best_threshold, ndigits=4)} with {scores_key} value of {scores[best_threshold]}."
|
||||
)
|
||||
|
||||
return best_threshold, scores[best_threshold], scores
|
|
@ -1,15 +1,15 @@
|
|||
from typing import Optional, Dict, Any, Union, List
|
||||
import platform
|
||||
import pkg_resources
|
||||
import json
|
||||
import platform
|
||||
from pathlib import Path
|
||||
from wasabi import Printer, MarkdownRenderer
|
||||
import srsly
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from ._util import app, Arg, Opt, string_to_list
|
||||
from .download import get_model_filename, get_latest_version
|
||||
from .. import util
|
||||
from .. import about
|
||||
import srsly
|
||||
from wasabi import MarkdownRenderer, Printer
|
||||
|
||||
from .. import about, util
|
||||
from ..compat import importlib_metadata
|
||||
from ._util import Arg, Opt, app, string_to_list
|
||||
from .download import get_latest_version, get_model_filename
|
||||
|
||||
|
||||
@app.command("info")
|
||||
|
@ -137,15 +137,14 @@ def info_installed_model_url(model: str) -> Optional[str]:
|
|||
dist-info available.
|
||||
"""
|
||||
try:
|
||||
dist = pkg_resources.get_distribution(model)
|
||||
data = json.loads(dist.get_metadata("direct_url.json"))
|
||||
return data["url"]
|
||||
except pkg_resources.DistributionNotFound:
|
||||
# no such package
|
||||
return None
|
||||
dist = importlib_metadata.distribution(model)
|
||||
text = dist.read_text("direct_url.json")
|
||||
if isinstance(text, str):
|
||||
data = json.loads(text)
|
||||
return data["url"]
|
||||
except Exception:
|
||||
# something else, like no file or invalid JSON
|
||||
return None
|
||||
pass
|
||||
return None
|
||||
|
||||
|
||||
def info_model_url(model: str) -> Dict[str, Any]:
|
||||
|
|
|
@ -1,19 +1,26 @@
|
|||
from typing import Optional, List, Tuple
|
||||
import re
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from wasabi import Printer, diff_strings
|
||||
from thinc.api import Config
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import srsly
|
||||
import re
|
||||
from jinja2 import Template
|
||||
from thinc.api import Config
|
||||
from wasabi import Printer, diff_strings
|
||||
|
||||
from .. import util
|
||||
from ..language import DEFAULT_CONFIG_PRETRAIN_PATH
|
||||
from ..schemas import RecommendationSchema
|
||||
from ..util import SimpleFrozenList
|
||||
from ._util import init_cli, Arg, Opt, show_validation_error, COMMAND
|
||||
from ._util import string_to_list, import_code
|
||||
|
||||
from ._util import (
|
||||
COMMAND,
|
||||
Arg,
|
||||
Opt,
|
||||
import_code,
|
||||
init_cli,
|
||||
show_validation_error,
|
||||
string_to_list,
|
||||
)
|
||||
|
||||
ROOT = Path(__file__).parent / "templates"
|
||||
TEMPLATE_PATH = ROOT / "quickstart_training.jinja"
|
||||
|
|
|
@ -1,15 +1,23 @@
|
|||
from typing import Optional
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from wasabi import msg
|
||||
import typer
|
||||
from typing import Optional
|
||||
|
||||
import srsly
|
||||
import typer
|
||||
from wasabi import msg
|
||||
|
||||
from .. import util
|
||||
from ..training.initialize import init_nlp, convert_vectors
|
||||
from ..language import Language
|
||||
from ._util import init_cli, Arg, Opt, parse_config_overrides, show_validation_error
|
||||
from ._util import import_code, setup_gpu
|
||||
from ..training.initialize import convert_vectors, init_nlp
|
||||
from ._util import (
|
||||
Arg,
|
||||
Opt,
|
||||
import_code,
|
||||
init_cli,
|
||||
parse_config_overrides,
|
||||
setup_gpu,
|
||||
show_validation_error,
|
||||
)
|
||||
|
||||
|
||||
@init_cli.command("vectors")
|
||||
|
@ -24,6 +32,7 @@ def init_vectors_cli(
|
|||
name: Optional[str] = Opt(None, "--name", "-n", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"),
|
||||
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
|
||||
jsonl_loc: Optional[Path] = Opt(None, "--lexemes-jsonl", "-j", help="Location of JSONL-formatted attributes file", hidden=True),
|
||||
attr: str = Opt("ORTH", "--attr", "-a", help="Optional token attribute to use for vectors, e.g. LOWER or NORM"),
|
||||
# fmt: on
|
||||
):
|
||||
"""Convert word vectors for use with spaCy. Will export an nlp object that
|
||||
|
@ -42,6 +51,7 @@ def init_vectors_cli(
|
|||
prune=prune,
|
||||
name=name,
|
||||
mode=mode,
|
||||
attr=attr,
|
||||
)
|
||||
msg.good(f"Successfully converted {len(nlp.vocab.vectors)} vectors")
|
||||
nlp.to_disk(output_dir)
|
||||
|
|
|
@ -1,18 +1,18 @@
|
|||
from typing import Optional, Union, Any, Dict, List, Tuple, cast
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from wasabi import Printer, MarkdownRenderer, get_raw_input
|
||||
from thinc.api import Config
|
||||
from collections import defaultdict
|
||||
from catalogue import RegistryError
|
||||
import srsly
|
||||
import sys
|
||||
import re
|
||||
import shutil
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union, cast
|
||||
|
||||
from ._util import app, Arg, Opt, string_to_list, WHEEL_SUFFIX, SDIST_SUFFIX
|
||||
from ..schemas import validate, ModelMetaSchema
|
||||
from .. import util
|
||||
from .. import about
|
||||
import srsly
|
||||
from catalogue import RegistryError
|
||||
from thinc.api import Config
|
||||
from wasabi import MarkdownRenderer, Printer, get_raw_input
|
||||
|
||||
from .. import about, util
|
||||
from ..schemas import ModelMetaSchema, validate
|
||||
from ._util import SDIST_SUFFIX, WHEEL_SUFFIX, Arg, Opt, app, string_to_list
|
||||
|
||||
|
||||
@app.command("package")
|
||||
|
@ -252,7 +252,7 @@ def get_third_party_dependencies(
|
|||
raise regerr from None
|
||||
module_name = func_info.get("module") # type: ignore[attr-defined]
|
||||
if module_name: # the code is part of a module, not a --code file
|
||||
modules.add(func_info["module"].split(".")[0]) # type: ignore[index]
|
||||
modules.add(func_info["module"].split(".")[0]) # type: ignore[union-attr]
|
||||
dependencies = []
|
||||
for module_name in modules:
|
||||
if module_name in distributions:
|
||||
|
|
|
@ -1,13 +1,21 @@
|
|||
from typing import Optional
|
||||
from pathlib import Path
|
||||
from wasabi import msg
|
||||
import typer
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import typer
|
||||
from wasabi import msg
|
||||
|
||||
from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
|
||||
from ._util import import_code, setup_gpu
|
||||
from ..training.pretrain import pretrain
|
||||
from ..util import load_config
|
||||
from ._util import (
|
||||
Arg,
|
||||
Opt,
|
||||
app,
|
||||
import_code,
|
||||
parse_config_overrides,
|
||||
setup_gpu,
|
||||
show_validation_error,
|
||||
)
|
||||
|
||||
|
||||
@app.command(
|
||||
|
@ -23,6 +31,7 @@ def pretrain_cli(
|
|||
resume_path: Optional[Path] = Opt(None, "--resume-path", "-r", help="Path to pretrained weights from which to resume pretraining"),
|
||||
epoch_resume: Optional[int] = Opt(None, "--epoch-resume", "-er", help="The epoch to resume counting from when using --resume-path. Prevents unintended overwriting of existing weight files."),
|
||||
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
|
||||
skip_last: bool = Opt(False, "--skip-last", "-L", help="Skip saving model-last.bin"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
|
@ -74,6 +83,7 @@ def pretrain_cli(
|
|||
epoch_resume=epoch_resume,
|
||||
use_gpu=use_gpu,
|
||||
silent=False,
|
||||
skip_last=skip_last,
|
||||
)
|
||||
msg.good("Successfully finished pretrain")
|
||||
|
||||
|
|
|
@ -1,17 +1,18 @@
|
|||
from typing import Optional, Sequence, Union, Iterator
|
||||
import tqdm
|
||||
from pathlib import Path
|
||||
import srsly
|
||||
import cProfile
|
||||
import itertools
|
||||
import pstats
|
||||
import sys
|
||||
import itertools
|
||||
from wasabi import msg, Printer
|
||||
import typer
|
||||
from pathlib import Path
|
||||
from typing import Iterator, Optional, Sequence, Union
|
||||
|
||||
import srsly
|
||||
import tqdm
|
||||
import typer
|
||||
from wasabi import Printer, msg
|
||||
|
||||
from ._util import app, debug_cli, Arg, Opt, NAME
|
||||
from ..language import Language
|
||||
from ..util import load_model
|
||||
from ._util import NAME, Arg, Opt, app, debug_cli
|
||||
|
||||
|
||||
@debug_cli.command("profile")
|
||||
|
|
|
@ -1,16 +1,27 @@
|
|||
from typing import Any, Dict, Optional
|
||||
from pathlib import Path
|
||||
from wasabi import msg
|
||||
import os
|
||||
import re
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import requests
|
||||
import typer
|
||||
from wasabi import msg
|
||||
|
||||
from ...util import ensure_path, working_dir
|
||||
from .._util import project_cli, Arg, Opt, PROJECT_FILE, load_project_config
|
||||
from .._util import get_checksum, download_file, git_checkout, get_git_version
|
||||
from .._util import SimpleFrozenDict, parse_config_overrides
|
||||
from .._util import (
|
||||
PROJECT_FILE,
|
||||
Arg,
|
||||
Opt,
|
||||
SimpleFrozenDict,
|
||||
download_file,
|
||||
get_checksum,
|
||||
get_git_version,
|
||||
git_checkout,
|
||||
load_project_config,
|
||||
parse_config_overrides,
|
||||
project_cli,
|
||||
)
|
||||
|
||||
# Whether assets are extra if `extra` is not set.
|
||||
EXTRA_DEFAULT = False
|
||||
|
@ -189,7 +200,11 @@ def convert_asset_url(url: str) -> str:
|
|||
RETURNS (str): The converted URL.
|
||||
"""
|
||||
# If the asset URL is a regular GitHub URL it's likely a mistake
|
||||
if re.match(r"(http(s?)):\/\/github.com", url) and "releases/download" not in url:
|
||||
if (
|
||||
re.match(r"(http(s?)):\/\/github.com", url)
|
||||
and "releases/download" not in url
|
||||
and "/raw/" not in url
|
||||
):
|
||||
converted = url.replace("github.com", "raw.githubusercontent.com")
|
||||
converted = re.sub(r"/(tree|blob)/", "/", converted)
|
||||
msg.warn(
|
||||
|
|
|
@ -1,13 +1,22 @@
|
|||
from typing import Optional
|
||||
from pathlib import Path
|
||||
from wasabi import msg
|
||||
import subprocess
|
||||
import re
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from wasabi import msg
|
||||
|
||||
from ... import about
|
||||
from ...util import ensure_path
|
||||
from .._util import project_cli, Arg, Opt, COMMAND, PROJECT_FILE
|
||||
from .._util import git_checkout, get_git_version, git_repo_branch_exists
|
||||
from .._util import (
|
||||
COMMAND,
|
||||
PROJECT_FILE,
|
||||
Arg,
|
||||
Opt,
|
||||
get_git_version,
|
||||
git_checkout,
|
||||
git_repo_branch_exists,
|
||||
project_cli,
|
||||
)
|
||||
|
||||
DEFAULT_REPO = about.__projects__
|
||||
DEFAULT_PROJECTS_BRANCH = about.__projects_branch__
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
from pathlib import Path
|
||||
from wasabi import msg, MarkdownRenderer
|
||||
|
||||
from wasabi import MarkdownRenderer, msg
|
||||
|
||||
from ...util import working_dir
|
||||
from .._util import project_cli, Arg, Opt, PROJECT_FILE, load_project_config
|
||||
|
||||
from .._util import PROJECT_FILE, Arg, Opt, load_project_config, project_cli
|
||||
|
||||
DOCS_URL = "https://spacy.io"
|
||||
INTRO_PROJECT = f"""The [`{PROJECT_FILE}`]({PROJECT_FILE}) defines the data assets required by the
|
||||
|
|
|
@ -1,15 +1,28 @@
|
|||
"""This module contains helpers and subcommands for integrating spaCy projects
|
||||
with Data Version Controk (DVC). https://dvc.org"""
|
||||
from typing import Dict, Any, List, Optional, Iterable
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterable, List, Optional
|
||||
|
||||
from wasabi import msg
|
||||
|
||||
from .._util import PROJECT_FILE, load_project_config, get_hash, project_cli
|
||||
from .._util import Arg, Opt, NAME, COMMAND
|
||||
from ...util import working_dir, split_command, join_command, run_command
|
||||
from ...util import SimpleFrozenList
|
||||
|
||||
from ...util import (
|
||||
SimpleFrozenList,
|
||||
join_command,
|
||||
run_command,
|
||||
split_command,
|
||||
working_dir,
|
||||
)
|
||||
from .._util import (
|
||||
COMMAND,
|
||||
NAME,
|
||||
PROJECT_FILE,
|
||||
Arg,
|
||||
Opt,
|
||||
get_hash,
|
||||
load_project_config,
|
||||
project_cli,
|
||||
)
|
||||
|
||||
DVC_CONFIG = "dvc.yaml"
|
||||
DVC_DIR = ".dvc"
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
from pathlib import Path
|
||||
|
||||
from wasabi import msg
|
||||
from .remote_storage import RemoteStorage
|
||||
from .remote_storage import get_command_hash
|
||||
from .._util import project_cli, Arg, logger
|
||||
from .._util import load_project_config
|
||||
|
||||
from .._util import Arg, load_project_config, logger, project_cli
|
||||
from .remote_storage import RemoteStorage, get_command_hash
|
||||
from .run import update_lockfile
|
||||
|
||||
|
||||
|
@ -39,14 +39,17 @@ def project_pull(project_dir: Path, remote: str, *, verbose: bool = False):
|
|||
# in the list.
|
||||
while commands:
|
||||
for i, cmd in enumerate(list(commands)):
|
||||
logger.debug(f"CMD: {cmd['name']}.")
|
||||
logger.debug("CMD: %s.", cmd["name"])
|
||||
deps = [project_dir / dep for dep in cmd.get("deps", [])]
|
||||
if all(dep.exists() for dep in deps):
|
||||
cmd_hash = get_command_hash("", "", deps, cmd["script"])
|
||||
for output_path in cmd.get("outputs", []):
|
||||
url = storage.pull(output_path, command_hash=cmd_hash)
|
||||
logger.debug(
|
||||
f"URL: {url} for {output_path} with command hash {cmd_hash}"
|
||||
"URL: %s for %s with command hash %s",
|
||||
url,
|
||||
output_path,
|
||||
cmd_hash,
|
||||
)
|
||||
yield url, output_path
|
||||
|
||||
|
@ -58,7 +61,7 @@ def project_pull(project_dir: Path, remote: str, *, verbose: bool = False):
|
|||
commands.pop(i)
|
||||
break
|
||||
else:
|
||||
logger.debug(f"Dependency missing. Skipping {cmd['name']} outputs.")
|
||||
logger.debug("Dependency missing. Skipping %s outputs.", cmd["name"])
|
||||
else:
|
||||
# If we didn't break the for loop, break the while loop.
|
||||
break
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
from pathlib import Path
|
||||
|
||||
from wasabi import msg
|
||||
from .remote_storage import RemoteStorage
|
||||
from .remote_storage import get_content_hash, get_command_hash
|
||||
from .._util import load_project_config
|
||||
from .._util import project_cli, Arg, logger
|
||||
|
||||
from .._util import Arg, load_project_config, logger, project_cli
|
||||
from .remote_storage import RemoteStorage, get_command_hash, get_content_hash
|
||||
|
||||
|
||||
@project_cli.command("push")
|
||||
|
@ -37,15 +37,15 @@ def project_push(project_dir: Path, remote: str):
|
|||
remote = config["remotes"][remote]
|
||||
storage = RemoteStorage(project_dir, remote)
|
||||
for cmd in config.get("commands", []):
|
||||
logger.debug(f"CMD: cmd['name']")
|
||||
logger.debug("CMD: %s", cmd["name"])
|
||||
deps = [project_dir / dep for dep in cmd.get("deps", [])]
|
||||
if any(not dep.exists() for dep in deps):
|
||||
logger.debug(f"Dependency missing. Skipping {cmd['name']} outputs")
|
||||
logger.debug("Dependency missing. Skipping %s outputs", cmd["name"])
|
||||
continue
|
||||
cmd_hash = get_command_hash(
|
||||
"", "", [project_dir / dep for dep in cmd.get("deps", [])], cmd["script"]
|
||||
)
|
||||
logger.debug(f"CMD_HASH: {cmd_hash}")
|
||||
logger.debug("CMD_HASH: %s", cmd_hash)
|
||||
for output_path in cmd.get("outputs", []):
|
||||
output_loc = project_dir / output_path
|
||||
if output_loc.exists() and _is_not_empty_dir(output_loc):
|
||||
|
@ -55,7 +55,7 @@ def project_push(project_dir: Path, remote: str):
|
|||
content_hash=get_content_hash(output_loc),
|
||||
)
|
||||
logger.debug(
|
||||
f"URL: {url} for output {output_path} with cmd_hash {cmd_hash}"
|
||||
"URL: %s for output %s with cmd_hash %s", url, output_path, cmd_hash
|
||||
)
|
||||
yield output_path, url
|
||||
|
||||
|
|
|
@ -1,18 +1,28 @@
|
|||
from typing import Optional, List, Dict, TYPE_CHECKING
|
||||
import hashlib
|
||||
import os
|
||||
import site
|
||||
import hashlib
|
||||
import urllib.parse
|
||||
import tarfile
|
||||
import urllib.parse
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional
|
||||
|
||||
from wasabi import msg
|
||||
|
||||
from .._util import get_hash, get_checksum, download_file, ensure_pathy
|
||||
from ...util import make_tempdir, get_minor_version, ENV_VARS, check_bool_env_var
|
||||
from ...git_info import GIT_VERSION
|
||||
from ... import about
|
||||
from ...errors import Errors
|
||||
from ...git_info import GIT_VERSION
|
||||
from ...util import ENV_VARS, check_bool_env_var, get_minor_version
|
||||
from .._util import (
|
||||
download_file,
|
||||
ensure_pathy,
|
||||
get_checksum,
|
||||
get_hash,
|
||||
make_tempdir,
|
||||
upload_file,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pathy import Pathy # noqa: F401
|
||||
from pathy import FluidPath # noqa: F401
|
||||
|
||||
|
||||
class RemoteStorage:
|
||||
|
@ -27,7 +37,7 @@ class RemoteStorage:
|
|||
self.url = ensure_pathy(url)
|
||||
self.compression = compression
|
||||
|
||||
def push(self, path: Path, command_hash: str, content_hash: str) -> "Pathy":
|
||||
def push(self, path: Path, command_hash: str, content_hash: str) -> "FluidPath":
|
||||
"""Compress a file or directory within a project and upload it to a remote
|
||||
storage. If an object exists at the full URL, nothing is done.
|
||||
|
||||
|
@ -48,9 +58,7 @@ class RemoteStorage:
|
|||
mode_string = f"w:{self.compression}" if self.compression else "w"
|
||||
with tarfile.open(tar_loc, mode=mode_string) as tar_file:
|
||||
tar_file.add(str(loc), arcname=str(path))
|
||||
with tar_loc.open(mode="rb") as input_file:
|
||||
with url.open(mode="wb") as output_file:
|
||||
output_file.write(input_file.read())
|
||||
upload_file(tar_loc, url)
|
||||
return url
|
||||
|
||||
def pull(
|
||||
|
@ -59,7 +67,7 @@ class RemoteStorage:
|
|||
*,
|
||||
command_hash: Optional[str] = None,
|
||||
content_hash: Optional[str] = None,
|
||||
) -> Optional["Pathy"]:
|
||||
) -> Optional["FluidPath"]:
|
||||
"""Retrieve a file from the remote cache. If the file already exists,
|
||||
nothing is done.
|
||||
|
||||
|
@ -84,7 +92,23 @@ class RemoteStorage:
|
|||
with tarfile.open(tar_loc, mode=mode_string) as tar_file:
|
||||
# This requires that the path is added correctly, relative
|
||||
# to root. This is how we set things up in push()
|
||||
tar_file.extractall(self.root)
|
||||
|
||||
# Disallow paths outside the current directory for the tar
|
||||
# file (CVE-2007-4559, directory traversal vulnerability)
|
||||
def is_within_directory(directory, target):
|
||||
abs_directory = os.path.abspath(directory)
|
||||
abs_target = os.path.abspath(target)
|
||||
prefix = os.path.commonprefix([abs_directory, abs_target])
|
||||
return prefix == abs_directory
|
||||
|
||||
def safe_extract(tar, path):
|
||||
for member in tar.getmembers():
|
||||
member_path = os.path.join(path, member.name)
|
||||
if not is_within_directory(path, member_path):
|
||||
raise ValueError(Errors.E852)
|
||||
tar.extractall(path)
|
||||
|
||||
safe_extract(tar_file, self.root)
|
||||
return url
|
||||
|
||||
def find(
|
||||
|
@ -93,25 +117,37 @@ class RemoteStorage:
|
|||
*,
|
||||
command_hash: Optional[str] = None,
|
||||
content_hash: Optional[str] = None,
|
||||
) -> Optional["Pathy"]:
|
||||
) -> Optional["FluidPath"]:
|
||||
"""Find the best matching version of a file within the storage,
|
||||
or `None` if no match can be found. If both the creation and content hash
|
||||
are specified, only exact matches will be returned. Otherwise, the most
|
||||
recent matching file is preferred.
|
||||
"""
|
||||
name = self.encode_name(str(path))
|
||||
urls = []
|
||||
if command_hash is not None and content_hash is not None:
|
||||
url = self.make_url(path, command_hash, content_hash)
|
||||
url = self.url / name / command_hash / content_hash
|
||||
urls = [url] if url.exists() else []
|
||||
elif command_hash is not None:
|
||||
urls = list((self.url / name / command_hash).iterdir())
|
||||
if (self.url / name / command_hash).exists():
|
||||
urls = list((self.url / name / command_hash).iterdir())
|
||||
else:
|
||||
urls = list((self.url / name).iterdir())
|
||||
if content_hash is not None:
|
||||
urls = [url for url in urls if url.parts[-1] == content_hash]
|
||||
if (self.url / name).exists():
|
||||
for sub_dir in (self.url / name).iterdir():
|
||||
urls.extend(sub_dir.iterdir())
|
||||
if content_hash is not None:
|
||||
urls = [url for url in urls if url.parts[-1] == content_hash]
|
||||
if len(urls) >= 2:
|
||||
try:
|
||||
urls.sort(key=lambda x: x.stat().last_modified) # type: ignore
|
||||
except Exception:
|
||||
msg.warn(
|
||||
"Unable to sort remote files by last modified. The file(s) "
|
||||
"pulled from the cache may not be the most recent."
|
||||
)
|
||||
return urls[-1] if urls else None
|
||||
|
||||
def make_url(self, path: Path, command_hash: str, content_hash: str) -> "Pathy":
|
||||
def make_url(self, path: Path, command_hash: str, content_hash: str) -> "FluidPath":
|
||||
"""Construct a URL from a subpath, a creation hash and a content hash."""
|
||||
return self.url / self.encode_name(str(path)) / command_hash / content_hash
|
||||
|
||||
|
|
|
@ -1,21 +1,39 @@
|
|||
from typing import Optional, List, Dict, Sequence, Any, Iterable, Tuple
|
||||
import os.path
|
||||
from pathlib import Path
|
||||
|
||||
import pkg_resources
|
||||
from wasabi import msg
|
||||
from wasabi.util import locale_escape
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple
|
||||
|
||||
import srsly
|
||||
import typer
|
||||
from wasabi import msg
|
||||
from wasabi.util import locale_escape
|
||||
|
||||
from ... import about
|
||||
from ...git_info import GIT_VERSION
|
||||
from ...util import working_dir, run_command, split_command, is_cwd, join_command
|
||||
from ...util import SimpleFrozenList, is_minor_version_match, ENV_VARS
|
||||
from ...util import check_bool_env_var, SimpleFrozenDict
|
||||
from .._util import PROJECT_FILE, PROJECT_LOCK, load_project_config, get_hash
|
||||
from .._util import get_checksum, project_cli, Arg, Opt, COMMAND, parse_config_overrides
|
||||
from ...util import (
|
||||
ENV_VARS,
|
||||
SimpleFrozenDict,
|
||||
SimpleFrozenList,
|
||||
check_bool_env_var,
|
||||
is_cwd,
|
||||
is_minor_version_match,
|
||||
join_command,
|
||||
run_command,
|
||||
split_command,
|
||||
working_dir,
|
||||
)
|
||||
from .._util import (
|
||||
COMMAND,
|
||||
PROJECT_FILE,
|
||||
PROJECT_LOCK,
|
||||
Arg,
|
||||
Opt,
|
||||
get_checksum,
|
||||
get_hash,
|
||||
load_project_config,
|
||||
parse_config_overrides,
|
||||
project_cli,
|
||||
)
|
||||
|
||||
|
||||
@project_cli.command(
|
||||
|
@ -53,6 +71,7 @@ def project_run(
|
|||
force: bool = False,
|
||||
dry: bool = False,
|
||||
capture: bool = False,
|
||||
skip_requirements_check: bool = False,
|
||||
) -> None:
|
||||
"""Run a named script defined in the project.yml. If the script is part
|
||||
of the default pipeline (defined in the "run" section), DVC is used to
|
||||
|
@ -69,6 +88,7 @@ def project_run(
|
|||
sys.exit will be called with the return code. You should use capture=False
|
||||
when you want to turn over execution to the command, and capture=True
|
||||
when you want to run the command more like a function.
|
||||
skip_requirements_check (bool): Whether to skip the requirements check.
|
||||
"""
|
||||
config = load_project_config(project_dir, overrides=overrides)
|
||||
commands = {cmd["name"]: cmd for cmd in config.get("commands", [])}
|
||||
|
@ -76,9 +96,10 @@ def project_run(
|
|||
validate_subcommand(list(commands.keys()), list(workflows.keys()), subcommand)
|
||||
|
||||
req_path = project_dir / "requirements.txt"
|
||||
if config.get("check_requirements", True) and os.path.exists(req_path):
|
||||
with req_path.open() as requirements_file:
|
||||
_check_requirements([req.replace("\n", "") for req in requirements_file])
|
||||
if not skip_requirements_check:
|
||||
if config.get("check_requirements", True) and os.path.exists(req_path):
|
||||
with req_path.open() as requirements_file:
|
||||
_check_requirements([req.strip() for req in requirements_file])
|
||||
|
||||
if subcommand in workflows:
|
||||
msg.info(f"Running workflow '{subcommand}'")
|
||||
|
@ -90,6 +111,7 @@ def project_run(
|
|||
force=force,
|
||||
dry=dry,
|
||||
capture=capture,
|
||||
skip_requirements_check=True,
|
||||
)
|
||||
else:
|
||||
cmd = commands[subcommand]
|
||||
|
@ -97,8 +119,8 @@ def project_run(
|
|||
if not (project_dir / dep).exists():
|
||||
err = f"Missing dependency specified by command '{subcommand}': {dep}"
|
||||
err_help = "Maybe you forgot to run the 'project assets' command or a previous step?"
|
||||
err_kwargs = {"exits": 1} if not dry else {}
|
||||
msg.fail(err, err_help, **err_kwargs)
|
||||
err_exits = 1 if not dry else None
|
||||
msg.fail(err, err_help, exits=err_exits)
|
||||
check_spacy_commit = check_bool_env_var(ENV_VARS.PROJECT_USE_GIT_VERSION)
|
||||
with working_dir(project_dir) as current_dir:
|
||||
msg.divider(subcommand)
|
||||
|
@ -327,6 +349,7 @@ def _check_requirements(requirements: List[str]) -> Tuple[bool, bool]:
|
|||
RETURNS (Tuple[bool, bool]): Whether (1) any packages couldn't be imported, (2) any packages with version conflicts
|
||||
exist.
|
||||
"""
|
||||
import pkg_resources
|
||||
|
||||
failed_pkgs_msgs: List[str] = []
|
||||
conflicting_pkgs_msgs: List[str] = []
|
||||
|
@ -338,6 +361,12 @@ def _check_requirements(requirements: List[str]) -> Tuple[bool, bool]:
|
|||
failed_pkgs_msgs.append(dnf.report())
|
||||
except pkg_resources.VersionConflict as vc:
|
||||
conflicting_pkgs_msgs.append(vc.report())
|
||||
except Exception:
|
||||
msg.warn(
|
||||
f"Unable to check requirement: {req} "
|
||||
"Checks are currently limited to requirement specifiers "
|
||||
"(PEP 508)"
|
||||
)
|
||||
|
||||
if len(failed_pkgs_msgs) or len(conflicting_pkgs_msgs):
|
||||
msg.warn(
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
{# This is a template for training configs used for the quickstart widget in
|
||||
the docs and the init config command. It encodes various best practices and
|
||||
can help generate the best possible configuration, given a user's requirements. #}
|
||||
{%- set use_transformer = hardware != "cpu" -%}
|
||||
{%- set use_transformer = hardware != "cpu" and transformer_data -%}
|
||||
{%- set transformer = transformer_data[optimize] if use_transformer else {} -%}
|
||||
{%- set listener_components = ["tagger", "morphologizer", "parser", "ner", "textcat", "textcat_multilabel", "entity_linker", "spancat", "trainable_lemmatizer"] -%}
|
||||
{%- set listener_components = ["tagger", "morphologizer", "parser", "ner", "textcat", "textcat_multilabel", "entity_linker", "span_finder", "spancat", "spancat_singlelabel", "trainable_lemmatizer"] -%}
|
||||
[paths]
|
||||
train = null
|
||||
dev = null
|
||||
|
@ -24,8 +24,11 @@ gpu_allocator = null
|
|||
lang = "{{ lang }}"
|
||||
{%- set has_textcat = ("textcat" in components or "textcat_multilabel" in components) -%}
|
||||
{%- set with_accuracy = optimize == "accuracy" -%}
|
||||
{%- set has_accurate_textcat = has_textcat and with_accuracy -%}
|
||||
{%- if ("tagger" in components or "morphologizer" in components or "parser" in components or "ner" in components or "spancat" in components or "trainable_lemmatizer" in components or "entity_linker" in components or has_accurate_textcat) -%}
|
||||
{# The BOW textcat doesn't need a source of features, so it can omit the
|
||||
tok2vec/transformer. #}
|
||||
{%- set with_accuracy_or_transformer = (use_transformer or with_accuracy) -%}
|
||||
{%- set textcat_needs_features = has_textcat and with_accuracy_or_transformer -%}
|
||||
{%- if ("tagger" in components or "morphologizer" in components or "parser" in components or "ner" in components or "span_finder" in components or "spancat" in components or "spancat_singlelabel" in components or "trainable_lemmatizer" in components or "entity_linker" in components or textcat_needs_features) -%}
|
||||
{%- set full_pipeline = ["transformer" if use_transformer else "tok2vec"] + components -%}
|
||||
{%- else -%}
|
||||
{%- set full_pipeline = components -%}
|
||||
|
@ -124,6 +127,30 @@ grad_factor = 1.0
|
|||
@layers = "reduce_mean.v1"
|
||||
{% endif -%}
|
||||
|
||||
{% if "span_finder" in components -%}
|
||||
[components.span_finder]
|
||||
factory = "span_finder"
|
||||
max_length = null
|
||||
min_length = null
|
||||
scorer = {"@scorers":"spacy.span_finder_scorer.v1"}
|
||||
spans_key = "sc"
|
||||
threshold = 0.5
|
||||
|
||||
[components.span_finder.model]
|
||||
@architectures = "spacy.SpanFinder.v1"
|
||||
|
||||
[components.span_finder.model.scorer]
|
||||
@layers = "spacy.LinearLogistic.v1"
|
||||
nO = 2
|
||||
|
||||
[components.span_finder.model.tok2vec]
|
||||
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||
grad_factor = 1.0
|
||||
|
||||
[components.span_finder.model.tok2vec.pooling]
|
||||
@layers = "reduce_mean.v1"
|
||||
{% endif -%}
|
||||
|
||||
{% if "spancat" in components -%}
|
||||
[components.spancat]
|
||||
factory = "spancat"
|
||||
|
@ -156,6 +183,36 @@ grad_factor = 1.0
|
|||
sizes = [1,2,3]
|
||||
{% endif -%}
|
||||
|
||||
{% if "spancat_singlelabel" in components %}
|
||||
[components.spancat_singlelabel]
|
||||
factory = "spancat_singlelabel"
|
||||
negative_weight = 1.0
|
||||
allow_overlap = true
|
||||
scorer = {"@scorers":"spacy.spancat_scorer.v1"}
|
||||
spans_key = "sc"
|
||||
|
||||
[components.spancat_singlelabel.model]
|
||||
@architectures = "spacy.SpanCategorizer.v1"
|
||||
|
||||
[components.spancat_singlelabel.model.reducer]
|
||||
@layers = "spacy.mean_max_reducer.v1"
|
||||
hidden_size = 128
|
||||
|
||||
[components.spancat_singlelabel.model.scorer]
|
||||
@layers = "Softmax.v2"
|
||||
|
||||
[components.spancat_singlelabel.model.tok2vec]
|
||||
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||
grad_factor = 1.0
|
||||
|
||||
[components.spancat_singlelabel.model.tok2vec.pooling]
|
||||
@layers = "reduce_mean.v1"
|
||||
|
||||
[components.spancat_singlelabel.suggester]
|
||||
@misc = "spacy.ngram_suggester.v1"
|
||||
sizes = [1,2,3]
|
||||
{% endif %}
|
||||
|
||||
{% if "trainable_lemmatizer" in components -%}
|
||||
[components.trainable_lemmatizer]
|
||||
factory = "trainable_lemmatizer"
|
||||
|
@ -221,10 +278,16 @@ no_output_layer = false
|
|||
|
||||
{% else -%}
|
||||
[components.textcat.model]
|
||||
@architectures = "spacy.TextCatBOW.v2"
|
||||
@architectures = "spacy.TextCatCNN.v2"
|
||||
exclusive_classes = true
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
nO = null
|
||||
|
||||
[components.textcat.model.tok2vec]
|
||||
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||
grad_factor = 1.0
|
||||
|
||||
[components.textcat.model.tok2vec.pooling]
|
||||
@layers = "reduce_mean.v1"
|
||||
{%- endif %}
|
||||
{%- endif %}
|
||||
|
||||
|
@ -252,10 +315,16 @@ no_output_layer = false
|
|||
|
||||
{% else -%}
|
||||
[components.textcat_multilabel.model]
|
||||
@architectures = "spacy.TextCatBOW.v2"
|
||||
@architectures = "spacy.TextCatCNN.v2"
|
||||
exclusive_classes = false
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
nO = null
|
||||
|
||||
[components.textcat_multilabel.model.tok2vec]
|
||||
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||
grad_factor = 1.0
|
||||
|
||||
[components.textcat_multilabel.model.tok2vec.pooling]
|
||||
@layers = "reduce_mean.v1"
|
||||
{%- endif %}
|
||||
{%- endif %}
|
||||
|
||||
|
@ -286,6 +355,7 @@ maxout_pieces = 3
|
|||
{% if "morphologizer" in components %}
|
||||
[components.morphologizer]
|
||||
factory = "morphologizer"
|
||||
label_smoothing = 0.05
|
||||
|
||||
[components.morphologizer.model]
|
||||
@architectures = "spacy.Tagger.v2"
|
||||
|
@ -299,6 +369,7 @@ width = ${components.tok2vec.model.encode.width}
|
|||
{% if "tagger" in components %}
|
||||
[components.tagger]
|
||||
factory = "tagger"
|
||||
label_smoothing = 0.05
|
||||
|
||||
[components.tagger.model]
|
||||
@architectures = "spacy.Tagger.v2"
|
||||
|
@ -345,6 +416,27 @@ nO = null
|
|||
width = ${components.tok2vec.model.encode.width}
|
||||
{% endif %}
|
||||
|
||||
{% if "span_finder" in components %}
|
||||
[components.span_finder]
|
||||
factory = "span_finder"
|
||||
max_length = null
|
||||
min_length = null
|
||||
scorer = {"@scorers":"spacy.span_finder_scorer.v1"}
|
||||
spans_key = "sc"
|
||||
threshold = 0.5
|
||||
|
||||
[components.span_finder.model]
|
||||
@architectures = "spacy.SpanFinder.v1"
|
||||
|
||||
[components.span_finder.model.scorer]
|
||||
@layers = "spacy.LinearLogistic.v1"
|
||||
nO = 2
|
||||
|
||||
[components.span_finder.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
{% endif %}
|
||||
|
||||
{% if "spancat" in components %}
|
||||
[components.spancat]
|
||||
factory = "spancat"
|
||||
|
@ -374,6 +466,33 @@ width = ${components.tok2vec.model.encode.width}
|
|||
sizes = [1,2,3]
|
||||
{% endif %}
|
||||
|
||||
{% if "spancat_singlelabel" in components %}
|
||||
[components.spancat_singlelabel]
|
||||
factory = "spancat_singlelabel"
|
||||
negative_weight = 1.0
|
||||
allow_overlap = true
|
||||
scorer = {"@scorers":"spacy.spancat_scorer.v1"}
|
||||
spans_key = "sc"
|
||||
|
||||
[components.spancat_singlelabel.model]
|
||||
@architectures = "spacy.SpanCategorizer.v1"
|
||||
|
||||
[components.spancat_singlelabel.model.reducer]
|
||||
@layers = "spacy.mean_max_reducer.v1"
|
||||
hidden_size = 128
|
||||
|
||||
[components.spancat_singlelabel.model.scorer]
|
||||
@layers = "Softmax.v2"
|
||||
|
||||
[components.spancat_singlelabel.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
|
||||
[components.spancat_singlelabel.suggester]
|
||||
@misc = "spacy.ngram_suggester.v1"
|
||||
sizes = [1,2,3]
|
||||
{% endif %}
|
||||
|
||||
{% if "trainable_lemmatizer" in components -%}
|
||||
[components.trainable_lemmatizer]
|
||||
factory = "trainable_lemmatizer"
|
||||
|
|
|
@ -37,6 +37,15 @@ bn:
|
|||
accuracy:
|
||||
name: sagorsarker/bangla-bert-base
|
||||
size_factor: 3
|
||||
ca:
|
||||
word_vectors: null
|
||||
transformer:
|
||||
efficiency:
|
||||
name: projecte-aina/roberta-base-ca-v2
|
||||
size_factor: 3
|
||||
accuracy:
|
||||
name: projecte-aina/roberta-base-ca-v2
|
||||
size_factor: 3
|
||||
da:
|
||||
word_vectors: da_core_news_lg
|
||||
transformer:
|
||||
|
|
|
@ -1,15 +1,23 @@
|
|||
from typing import Optional, Dict, Any, Union
|
||||
from pathlib import Path
|
||||
from wasabi import msg
|
||||
import typer
|
||||
import logging
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
import typer
|
||||
from wasabi import msg
|
||||
|
||||
from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
|
||||
from ._util import import_code, setup_gpu
|
||||
from ..training.loop import train as train_nlp
|
||||
from ..training.initialize import init_nlp
|
||||
from .. import util
|
||||
from ..training.initialize import init_nlp
|
||||
from ..training.loop import train as train_nlp
|
||||
from ._util import (
|
||||
Arg,
|
||||
Opt,
|
||||
app,
|
||||
import_code,
|
||||
parse_config_overrides,
|
||||
setup_gpu,
|
||||
show_validation_error,
|
||||
)
|
||||
|
||||
|
||||
@app.command(
|
||||
|
|
|
@ -1,14 +1,21 @@
|
|||
from typing import Tuple
|
||||
from pathlib import Path
|
||||
import sys
|
||||
import requests
|
||||
from wasabi import msg, Printer
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from typing import Tuple
|
||||
|
||||
import requests
|
||||
from wasabi import Printer, msg
|
||||
|
||||
from ._util import app
|
||||
from .. import about
|
||||
from ..util import get_package_version, get_installed_models, get_minor_version
|
||||
from ..util import get_package_path, get_model_meta, is_compatible_version
|
||||
from ..util import (
|
||||
get_installed_models,
|
||||
get_minor_version,
|
||||
get_model_meta,
|
||||
get_package_path,
|
||||
get_package_version,
|
||||
is_compatible_version,
|
||||
)
|
||||
from ._util import app
|
||||
|
||||
|
||||
@app.command("validate")
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
"""Helpers for Python and platform compatibility."""
|
||||
import sys
|
||||
|
||||
from thinc.util import copy_array
|
||||
|
||||
try:
|
||||
|
|
|
@ -90,6 +90,8 @@ dev_corpus = "corpora.dev"
|
|||
train_corpus = "corpora.train"
|
||||
# Optional callback before nlp object is saved to disk after training
|
||||
before_to_disk = null
|
||||
# Optional callback that is invoked at the start of each training step
|
||||
before_update = null
|
||||
|
||||
[training.logger]
|
||||
@loggers = "spacy.ConsoleLogger.v1"
|
||||
|
|
|
@ -4,14 +4,13 @@ spaCy's built in visualization suite for dependencies and named entities.
|
|||
DOCS: https://spacy.io/api/top-level#displacy
|
||||
USAGE: https://spacy.io/usage/visualizers
|
||||
"""
|
||||
from typing import Union, Iterable, Optional, Dict, Any, Callable
|
||||
import warnings
|
||||
from typing import Any, Callable, Dict, Iterable, Optional, Union
|
||||
|
||||
from .render import DependencyRenderer, EntityRenderer, SpanRenderer
|
||||
from ..tokens import Doc, Span
|
||||
from ..errors import Errors, Warnings
|
||||
from ..util import is_in_jupyter
|
||||
|
||||
from ..tokens import Doc, Span
|
||||
from ..util import find_available_port, is_in_jupyter
|
||||
from .render import DependencyRenderer, EntityRenderer, SpanRenderer
|
||||
|
||||
_html = {}
|
||||
RENDER_WRAPPER = None
|
||||
|
@ -36,7 +35,7 @@ def render(
|
|||
jupyter (bool): Override Jupyter auto-detection.
|
||||
options (dict): Visualiser-specific options, e.g. colors.
|
||||
manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts.
|
||||
RETURNS (str): Rendered HTML markup.
|
||||
RETURNS (str): Rendered SVG or HTML markup.
|
||||
|
||||
DOCS: https://spacy.io/api/top-level#displacy.render
|
||||
USAGE: https://spacy.io/usage/visualizers
|
||||
|
@ -67,7 +66,7 @@ def render(
|
|||
if jupyter or (jupyter is None and is_in_jupyter()):
|
||||
# return HTML rendered by IPython display()
|
||||
# See #4840 for details on span wrapper to disable mathjax
|
||||
from IPython.core.display import display, HTML
|
||||
from IPython.core.display import HTML, display
|
||||
|
||||
return display(HTML('<span class="tex2jax_ignore">{}</span>'.format(html)))
|
||||
return html
|
||||
|
@ -82,6 +81,7 @@ def serve(
|
|||
manual: bool = False,
|
||||
port: int = 5000,
|
||||
host: str = "0.0.0.0",
|
||||
auto_select_port: bool = False,
|
||||
) -> None:
|
||||
"""Serve displaCy visualisation.
|
||||
|
||||
|
@ -93,12 +93,15 @@ def serve(
|
|||
manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts.
|
||||
port (int): Port to serve visualisation.
|
||||
host (str): Host to serve visualisation.
|
||||
auto_select_port (bool): Automatically select a port if the specified port is in use.
|
||||
|
||||
DOCS: https://spacy.io/api/top-level#displacy.serve
|
||||
USAGE: https://spacy.io/usage/visualizers
|
||||
"""
|
||||
from wsgiref import simple_server
|
||||
|
||||
port = find_available_port(port, host, auto_select_port)
|
||||
|
||||
if is_in_jupyter():
|
||||
warnings.warn(Warnings.W011)
|
||||
render(docs, style=style, page=page, minify=minify, options=options, manual=manual)
|
||||
|
@ -120,13 +123,17 @@ def app(environ, start_response):
|
|||
return [res]
|
||||
|
||||
|
||||
def parse_deps(orig_doc: Doc, options: Dict[str, Any] = {}) -> Dict[str, Any]:
|
||||
def parse_deps(
|
||||
orig_doc: Union[Doc, Span], options: Dict[str, Any] = {}
|
||||
) -> Dict[str, Any]:
|
||||
"""Generate dependency parse in {'words': [], 'arcs': []} format.
|
||||
|
||||
orig_doc (Doc): Document to parse.
|
||||
orig_doc (Union[Doc, Span]): Document to parse.
|
||||
options (Dict[str, Any]): Dependency parse specific visualisation options.
|
||||
RETURNS (dict): Generated dependency parse keyed by words and arcs.
|
||||
"""
|
||||
if isinstance(orig_doc, Span):
|
||||
orig_doc = orig_doc.as_doc()
|
||||
doc = Doc(orig_doc.vocab).from_bytes(
|
||||
orig_doc.to_bytes(exclude=["user_data", "user_hooks"])
|
||||
)
|
||||
|
@ -228,12 +235,13 @@ def parse_spans(doc: Doc, options: Dict[str, Any] = {}) -> Dict[str, Any]:
|
|||
"kb_id": span.kb_id_ if span.kb_id_ else "",
|
||||
"kb_url": kb_url_template.format(span.kb_id_) if kb_url_template else "#",
|
||||
}
|
||||
for span in doc.spans[spans_key]
|
||||
for span in doc.spans.get(spans_key, [])
|
||||
]
|
||||
tokens = [token.text for token in doc]
|
||||
|
||||
if not spans:
|
||||
warnings.warn(Warnings.W117.format(spans_key=spans_key))
|
||||
keys = list(doc.spans.keys())
|
||||
warnings.warn(Warnings.W117.format(spans_key=spans_key, keys=keys))
|
||||
title = doc.user_data.get("title", None) if hasattr(doc, "user_data") else None
|
||||
settings = get_doc_settings(doc)
|
||||
return {
|
||||
|
|
|
@ -1,15 +1,29 @@
|
|||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
import uuid
|
||||
import itertools
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
from ..errors import Errors
|
||||
from ..util import escape_html, minify_html, registry
|
||||
from .templates import TPL_DEP_ARCS, TPL_DEP_SVG, TPL_DEP_WORDS
|
||||
from .templates import TPL_DEP_WORDS_LEMMA, TPL_ENT, TPL_ENT_RTL, TPL_ENTS
|
||||
from .templates import TPL_FIGURE, TPL_KB_LINK, TPL_PAGE, TPL_SPAN
|
||||
from .templates import TPL_SPAN_RTL, TPL_SPAN_SLICE, TPL_SPAN_SLICE_RTL
|
||||
from .templates import TPL_SPAN_START, TPL_SPAN_START_RTL, TPL_SPANS
|
||||
from .templates import TPL_TITLE
|
||||
from .templates import (
|
||||
TPL_DEP_ARCS,
|
||||
TPL_DEP_SVG,
|
||||
TPL_DEP_WORDS,
|
||||
TPL_DEP_WORDS_LEMMA,
|
||||
TPL_ENT,
|
||||
TPL_ENT_RTL,
|
||||
TPL_ENTS,
|
||||
TPL_FIGURE,
|
||||
TPL_KB_LINK,
|
||||
TPL_PAGE,
|
||||
TPL_SPAN,
|
||||
TPL_SPAN_RTL,
|
||||
TPL_SPAN_SLICE,
|
||||
TPL_SPAN_SLICE_RTL,
|
||||
TPL_SPAN_START,
|
||||
TPL_SPAN_START_RTL,
|
||||
TPL_SPANS,
|
||||
TPL_TITLE,
|
||||
)
|
||||
|
||||
DEFAULT_LANG = "en"
|
||||
DEFAULT_DIR = "ltr"
|
||||
|
@ -94,7 +108,7 @@ class SpanRenderer:
|
|||
parsed (list): Dependency parses to render.
|
||||
page (bool): Render parses wrapped as full HTML page.
|
||||
minify (bool): Minify HTML markup.
|
||||
RETURNS (str): Rendered HTML markup.
|
||||
RETURNS (str): Rendered SVG or HTML markup.
|
||||
"""
|
||||
rendered = []
|
||||
for i, p in enumerate(parsed):
|
||||
|
@ -510,7 +524,7 @@ class EntityRenderer:
|
|||
parsed (list): Dependency parses to render.
|
||||
page (bool): Render parses wrapped as full HTML page.
|
||||
minify (bool): Minify HTML markup.
|
||||
RETURNS (str): Rendered HTML markup.
|
||||
RETURNS (str): Rendered SVG or HTML markup.
|
||||
"""
|
||||
rendered = []
|
||||
for i, p in enumerate(parsed):
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import warnings
|
||||
|
||||
from .compat import Literal
|
||||
|
||||
|
||||
|
@ -199,7 +200,7 @@ class Warnings(metaclass=ErrorsWithCodes):
|
|||
W117 = ("No spans to visualize found in Doc object with spans_key: '{spans_key}'. If this is "
|
||||
"surprising to you, make sure the Doc was processed using a model "
|
||||
"that supports span categorization, and check the `doc.spans[spans_key]` "
|
||||
"property manually if necessary.")
|
||||
"property manually if necessary.\n\nAvailable keys: {keys}")
|
||||
W118 = ("Term '{term}' not found in glossary. It may however be explained in documentation "
|
||||
"for the corpora used to train the language. Please check "
|
||||
"`nlp.meta[\"sources\"]` for any relevant links.")
|
||||
|
@ -212,8 +213,12 @@ class Warnings(metaclass=ErrorsWithCodes):
|
|||
W121 = ("Attempting to trace non-existent method '{method}' in pipe '{pipe}'")
|
||||
W122 = ("Couldn't trace method '{method}' in pipe '{pipe}'. This can happen if the pipe class "
|
||||
"is a Cython extension type.")
|
||||
W123 = ("Argument {arg} with value {arg_value} is used instead of {config_value} as specified in the config. Be "
|
||||
"aware that this might affect other components in your pipeline.")
|
||||
W123 = ("Argument `enable` with value {enable} does not contain all values specified in the config option "
|
||||
"`enabled` ({enabled}). Be aware that this might affect other components in your pipeline.")
|
||||
W124 = ("{host}:{port} is already in use, using the nearest available port {serve_port} as an alternative.")
|
||||
W125 = ("The StaticVectors key_attr is no longer used. To set a custom "
|
||||
"key attribute for vectors, configure it through Vectors(attr=) or "
|
||||
"'spacy init vectors --attr'")
|
||||
|
||||
|
||||
class Errors(metaclass=ErrorsWithCodes):
|
||||
|
@ -345,6 +350,11 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
"clear the existing vectors and resize the table.")
|
||||
E074 = ("Error interpreting compiled match pattern: patterns are expected "
|
||||
"to end with the attribute {attr}. Got: {bad_attr}.")
|
||||
E079 = ("Error computing states in beam: number of predicted beams "
|
||||
"({pbeams}) does not equal number of gold beams ({gbeams}).")
|
||||
E080 = ("Duplicate state found in beam: {key}.")
|
||||
E081 = ("Error getting gradient in beam: number of histories ({n_hist}) "
|
||||
"does not equal number of losses ({losses}).")
|
||||
E082 = ("Error deprojectivizing parse: number of heads ({n_heads}), "
|
||||
"projective heads ({n_proj_heads}) and labels ({n_labels}) do not "
|
||||
"match.")
|
||||
|
@ -438,8 +448,7 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
E133 = ("The sum of prior probabilities for alias '{alias}' should not "
|
||||
"exceed 1, but found {sum}.")
|
||||
E134 = ("Entity '{entity}' is not defined in the Knowledge Base.")
|
||||
E139 = ("Knowledge base for component '{name}' is empty. Use the methods "
|
||||
"`kb.add_entity` and `kb.add_alias` to add entries.")
|
||||
E139 = ("Knowledge base for component '{name}' is empty.")
|
||||
E140 = ("The list of entities, prior probabilities and entity vectors "
|
||||
"should be of equal length.")
|
||||
E141 = ("Entity vectors should be of length {required} instead of the "
|
||||
|
@ -544,6 +553,12 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
"during training, make sure to include it in 'annotating components'")
|
||||
|
||||
# New errors added in v3.x
|
||||
E850 = ("The PretrainVectors objective currently only supports default or "
|
||||
"floret vectors, not {mode} vectors.")
|
||||
E851 = ("The 'textcat' component labels should only have values of 0 or 1, "
|
||||
"but found value of '{val}'.")
|
||||
E852 = ("The tar file pulled from the remote attempted an unsafe path "
|
||||
"traversal.")
|
||||
E853 = ("Unsupported component factory name '{name}'. The character '.' is "
|
||||
"not permitted in factory names.")
|
||||
E854 = ("Unable to set doc.ents. Check that the 'ents_filter' does not "
|
||||
|
@ -727,8 +742,8 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
"model from a shortcut, which is obsolete as of spaCy v3.0. To "
|
||||
"load the model, use its full name instead:\n\n"
|
||||
"nlp = spacy.load(\"{full}\")\n\nFor more details on the available "
|
||||
"models, see the models directory: https://spacy.io/models. If you "
|
||||
"want to create a blank model, use spacy.blank: "
|
||||
"models, see the models directory: https://spacy.io/models and if "
|
||||
"you want to create a blank model, use spacy.blank: "
|
||||
"nlp = spacy.blank(\"{name}\")")
|
||||
E942 = ("Executing `after_{name}` callback failed. Expected the function to "
|
||||
"return an initialized nlp object but got: {value}. Maybe "
|
||||
|
@ -952,6 +967,20 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
"sure it's overwritten on the subclass.")
|
||||
E1046 = ("{cls_name} is an abstract class and cannot be instantiated. If you are looking for spaCy's default "
|
||||
"knowledge base, use `InMemoryLookupKB`.")
|
||||
E1047 = ("`find_threshold()` only supports components with a `scorer` attribute.")
|
||||
E1048 = ("Got '{unexpected}' as console progress bar type, but expected one of the following: {expected}")
|
||||
E1049 = ("No available port found for displaCy on host {host}. Please specify an available port "
|
||||
"with `displacy.serve(doc, port=port)`")
|
||||
E1050 = ("Port {port} is already in use. Please specify an available port with `displacy.serve(doc, port=port)` "
|
||||
"or use `auto_select_port=True` to pick an available port automatically.")
|
||||
E1051 = ("'allow_overlap' can only be False when max_positive is 1, but found 'max_positive': {max_positive}.")
|
||||
E1052 = ("Unable to copy spans: the character offsets for the span at "
|
||||
"index {i} in the span group do not align with the tokenization "
|
||||
"in the target doc.")
|
||||
E1053 = ("Both 'min_length' and 'max_length' should be larger than 0, but found"
|
||||
" 'min_length': {min_length}, 'max_length': {max_length}")
|
||||
E1054 = ("The text, including whitespace, must match between reference and "
|
||||
"predicted docs when training {component}.")
|
||||
|
||||
|
||||
# Deprecated model shortcuts, only used in errors and warnings
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import warnings
|
||||
|
||||
from .errors import Warnings
|
||||
|
||||
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
from .candidate import Candidate, get_candidates, get_candidates_batch
|
||||
from .kb import KnowledgeBase
|
||||
from .kb_in_memory import InMemoryLookupKB
|
||||
from .candidate import Candidate, get_candidates, get_candidates_batch
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
from .kb cimport KnowledgeBase
|
||||
from libcpp.vector cimport vector
|
||||
|
||||
from ..typedefs cimport hash_t
|
||||
from .kb cimport KnowledgeBase
|
||||
|
||||
|
||||
# Object used by the Entity Linker that summarizes one entity-alias candidate combination.
|
||||
cdef class Candidate:
|
||||
|
|
|
@ -1,9 +1,12 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
|
||||
from typing import Iterable
|
||||
|
||||
from .kb cimport KnowledgeBase
|
||||
|
||||
from ..tokens import Span
|
||||
|
||||
|
||||
cdef class Candidate:
|
||||
"""A `Candidate` object refers to a textual mention (`alias`) that may or may not be resolved
|
||||
to a specific `entity` from a Knowledge Base. This will be used as input for the entity linking
|
||||
|
|
|
@ -2,8 +2,10 @@
|
|||
|
||||
from cymem.cymem cimport Pool
|
||||
from libc.stdint cimport int64_t
|
||||
|
||||
from ..vocab cimport Vocab
|
||||
|
||||
|
||||
cdef class KnowledgeBase:
|
||||
cdef Pool mem
|
||||
cdef readonly Vocab vocab
|
||||
|
|
|
@ -2,12 +2,13 @@
|
|||
|
||||
from pathlib import Path
|
||||
from typing import Iterable, Tuple, Union
|
||||
|
||||
from cymem.cymem cimport Pool
|
||||
|
||||
from .candidate import Candidate
|
||||
from ..errors import Errors
|
||||
from ..tokens import Span
|
||||
from ..util import SimpleFrozenList
|
||||
from ..errors import Errors
|
||||
from .candidate import Candidate
|
||||
|
||||
|
||||
cdef class KnowledgeBase:
|
||||
|
|
|
@ -1,11 +1,11 @@
|
|||
"""Knowledge-base for entity or concept linking."""
|
||||
from preshed.maps cimport PreshMap
|
||||
from libcpp.vector cimport vector
|
||||
from libc.stdint cimport int32_t, int64_t
|
||||
from libc.stdio cimport FILE
|
||||
from libcpp.vector cimport vector
|
||||
from preshed.maps cimport PreshMap
|
||||
|
||||
from ..structs cimport AliasC, KBEntryC
|
||||
from ..typedefs cimport hash_t
|
||||
from ..structs cimport KBEntryC, AliasC
|
||||
from .kb cimport KnowledgeBase
|
||||
|
||||
ctypedef vector[KBEntryC] entry_vec
|
||||
|
|
|
@ -1,23 +1,28 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
from typing import Iterable, Callable, Dict, Any, Union
|
||||
from typing import Any, Callable, Dict, Iterable, Union
|
||||
|
||||
import srsly
|
||||
from preshed.maps cimport PreshMap
|
||||
from cpython.exc cimport PyErr_SetFromErrno
|
||||
from libc.stdio cimport fopen, fclose, fread, fwrite, feof, fseek
|
||||
from libc.stdint cimport int32_t, int64_t
|
||||
from libcpp.vector cimport vector
|
||||
|
||||
from pathlib import Path
|
||||
from cpython.exc cimport PyErr_SetFromErrno
|
||||
from libc.stdint cimport int32_t, int64_t
|
||||
from libc.stdio cimport fclose, feof, fopen, fread, fseek, fwrite
|
||||
from libcpp.vector cimport vector
|
||||
from preshed.maps cimport PreshMap
|
||||
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
from ..tokens import Span
|
||||
|
||||
from ..typedefs cimport hash_t
|
||||
from ..errors import Errors, Warnings
|
||||
|
||||
from .. import util
|
||||
from ..errors import Errors, Warnings
|
||||
from ..util import SimpleFrozenList, ensure_path
|
||||
|
||||
from ..vocab cimport Vocab
|
||||
from .kb cimport KnowledgeBase
|
||||
|
||||
from .candidate import Candidate as Candidate
|
||||
|
||||
|
||||
|
@ -25,7 +30,7 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
"""An `InMemoryLookupKB` instance stores unique identifiers for entities and their textual aliases,
|
||||
to support entity linking of named entities to real-world concepts.
|
||||
|
||||
DOCS: https://spacy.io/api/kb_in_memory
|
||||
DOCS: https://spacy.io/api/inmemorylookupkb
|
||||
"""
|
||||
|
||||
def __init__(self, Vocab vocab, entity_vector_length):
|
||||
|
@ -46,6 +51,9 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
self._alias_index = PreshMap(nr_aliases + 1)
|
||||
self._aliases_table = alias_vec(nr_aliases + 1)
|
||||
|
||||
def is_empty(self):
|
||||
return len(self) == 0
|
||||
|
||||
def __len__(self):
|
||||
return self.get_size_entities()
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from ...language import BaseDefaults, Language
|
||||
from .stop_words import STOP_WORDS
|
||||
from ...language import Language, BaseDefaults
|
||||
|
||||
|
||||
class AfrikaansDefaults(BaseDefaults):
|
||||
|
|
|
@ -1,12 +1,11 @@
|
|||
from .stop_words import STOP_WORDS
|
||||
from ...attrs import LANG
|
||||
from ...language import BaseDefaults, Language
|
||||
from ...util import update_exc
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .punctuation import TOKENIZER_SUFFIXES
|
||||
|
||||
from .stop_words import STOP_WORDS
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
from ...language import Language, BaseDefaults
|
||||
from ...attrs import LANG
|
||||
from ...util import update_exc
|
||||
|
||||
|
||||
class AmharicDefaults(BaseDefaults):
|
||||
|
|
|
@ -1,5 +1,11 @@
|
|||
from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES, CURRENCY
|
||||
from ..char_classes import UNITS, ALPHA_UPPER
|
||||
from ..char_classes import (
|
||||
ALPHA_UPPER,
|
||||
CURRENCY,
|
||||
LIST_ELLIPSES,
|
||||
LIST_PUNCT,
|
||||
LIST_QUOTES,
|
||||
UNITS,
|
||||
)
|
||||
|
||||
_list_punct = LIST_PUNCT + "፡ ። ፣ ፤ ፥ ፦ ፧ ፠ ፨".strip().split()
|
||||
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
from ...symbols import ORTH, NORM
|
||||
|
||||
from ...symbols import NORM, ORTH
|
||||
|
||||
_exc = {}
|
||||
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
from .stop_words import STOP_WORDS
|
||||
from ...language import BaseDefaults, Language
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .punctuation import TOKENIZER_SUFFIXES
|
||||
from .stop_words import STOP_WORDS
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from ...language import Language, BaseDefaults
|
||||
|
||||
|
||||
class ArabicDefaults(BaseDefaults):
|
||||
|
|
|
@ -1,5 +1,11 @@
|
|||
from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES, CURRENCY
|
||||
from ..char_classes import UNITS, ALPHA_UPPER
|
||||
from ..char_classes import (
|
||||
ALPHA_UPPER,
|
||||
CURRENCY,
|
||||
LIST_ELLIPSES,
|
||||
LIST_PUNCT,
|
||||
LIST_QUOTES,
|
||||
UNITS,
|
||||
)
|
||||
|
||||
_suffixes = (
|
||||
LIST_PUNCT
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
from ...symbols import ORTH, NORM
|
||||
from ...symbols import NORM, ORTH
|
||||
from ...util import update_exc
|
||||
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
|
||||
_exc = {}
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
from .stop_words import STOP_WORDS
|
||||
from ...language import BaseDefaults, Language
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from ...language import Language, BaseDefaults
|
||||
from .stop_words import STOP_WORDS
|
||||
|
||||
|
||||
class AzerbaijaniDefaults(BaseDefaults):
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
from ...attrs import LIKE_NUM
|
||||
|
||||
|
||||
# Eleven, twelve etc. are written separate: on bir, on iki
|
||||
|
||||
_num_words = [
|
||||
|
|
|
@ -1,12 +1,14 @@
|
|||
from ...attrs import LANG
|
||||
from ...language import BaseDefaults, Language
|
||||
from ...util import update_exc
|
||||
from ..punctuation import (
|
||||
COMBINING_DIACRITICS_TOKENIZER_INFIXES,
|
||||
COMBINING_DIACRITICS_TOKENIZER_SUFFIXES,
|
||||
)
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .stop_words import STOP_WORDS
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
from ..punctuation import COMBINING_DIACRITICS_TOKENIZER_INFIXES
|
||||
from ..punctuation import COMBINING_DIACRITICS_TOKENIZER_SUFFIXES
|
||||
from ...language import Language, BaseDefaults
|
||||
from ...attrs import LANG
|
||||
from ...util import update_exc
|
||||
|
||||
|
||||
class BulgarianDefaults(BaseDefaults):
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
from ...attrs import LIKE_NUM
|
||||
|
||||
|
||||
_num_words = [
|
||||
"нула",
|
||||
"едно",
|
||||
|
|
|
@ -4,8 +4,7 @@ References:
|
|||
(countries, occupations, fields of studies and more).
|
||||
"""
|
||||
|
||||
from ...symbols import ORTH, NORM
|
||||
|
||||
from ...symbols import NORM, ORTH
|
||||
|
||||
_exc = {}
|
||||
|
||||
|
|
|
@ -1,10 +1,12 @@
|
|||
from typing import Optional, Callable
|
||||
from typing import Callable, Optional
|
||||
|
||||
from thinc.api import Model
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES, TOKENIZER_INFIXES
|
||||
from .stop_words import STOP_WORDS
|
||||
from ...language import Language, BaseDefaults
|
||||
|
||||
from ...language import BaseDefaults, Language
|
||||
from ...pipeline import Lemmatizer
|
||||
from .punctuation import TOKENIZER_INFIXES, TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
|
||||
from .stop_words import STOP_WORDS
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
|
||||
|
||||
class BengaliDefaults(BaseDefaults):
|
||||
|
|
|
@ -1,6 +1,14 @@
|
|||
from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES, LIST_ICONS
|
||||
from ..char_classes import ALPHA_LOWER, ALPHA, HYPHENS, CONCAT_QUOTES, UNITS
|
||||
|
||||
from ..char_classes import (
|
||||
ALPHA,
|
||||
ALPHA_LOWER,
|
||||
CONCAT_QUOTES,
|
||||
HYPHENS,
|
||||
LIST_ELLIPSES,
|
||||
LIST_ICONS,
|
||||
LIST_PUNCT,
|
||||
LIST_QUOTES,
|
||||
UNITS,
|
||||
)
|
||||
|
||||
_currency = r"\$¢£€¥฿৳"
|
||||
_quotes = CONCAT_QUOTES.replace("'", "")
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
from ...symbols import ORTH, NORM
|
||||
from ...symbols import NORM, ORTH
|
||||
from ...util import update_exc
|
||||
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
|
||||
_exc = {}
|
||||
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
from typing import Optional, Callable
|
||||
from typing import Callable, Optional
|
||||
|
||||
from thinc.api import Model
|
||||
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from .punctuation import TOKENIZER_INFIXES, TOKENIZER_SUFFIXES, TOKENIZER_PREFIXES
|
||||
from .stop_words import STOP_WORDS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .syntax_iterators import SYNTAX_ITERATORS
|
||||
from ...language import Language, BaseDefaults
|
||||
from ...language import BaseDefaults, Language
|
||||
from .lemmatizer import CatalanLemmatizer
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .punctuation import TOKENIZER_INFIXES, TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
|
||||
from .stop_words import STOP_WORDS
|
||||
from .syntax_iterators import SYNTAX_ITERATORS
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
|
||||
|
||||
class CatalanDefaults(BaseDefaults):
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
from ...attrs import LIKE_NUM
|
||||
|
||||
|
||||
_num_words = [
|
||||
"zero",
|
||||
"un",
|
||||
|
|
|
@ -1,9 +1,18 @@
|
|||
from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES, LIST_ICONS
|
||||
from ..char_classes import LIST_CURRENCY
|
||||
from ..char_classes import CURRENCY
|
||||
from ..char_classes import CONCAT_QUOTES, ALPHA_LOWER, ALPHA_UPPER, ALPHA, PUNCT
|
||||
from ..char_classes import merge_chars, _units
|
||||
|
||||
from ..char_classes import (
|
||||
ALPHA,
|
||||
ALPHA_LOWER,
|
||||
ALPHA_UPPER,
|
||||
CONCAT_QUOTES,
|
||||
CURRENCY,
|
||||
LIST_CURRENCY,
|
||||
LIST_ELLIPSES,
|
||||
LIST_ICONS,
|
||||
LIST_PUNCT,
|
||||
LIST_QUOTES,
|
||||
PUNCT,
|
||||
_units,
|
||||
merge_chars,
|
||||
)
|
||||
|
||||
ELISION = " ' ’ ".strip().replace(" ", "").replace("\n", "")
|
||||
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
from typing import Union, Iterator, Tuple
|
||||
from ...tokens import Doc, Span
|
||||
from ...symbols import NOUN, PROPN
|
||||
from typing import Iterator, Tuple, Union
|
||||
|
||||
from ...errors import Errors
|
||||
from ...symbols import NOUN, PROPN
|
||||
from ...tokens import Doc, Span
|
||||
|
||||
|
||||
def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Tuple[int, int, int]]:
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
from ...symbols import ORTH, NORM
|
||||
from ...symbols import NORM, ORTH
|
||||
from ...util import update_exc
|
||||
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
|
||||
_exc = {}
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
from .stop_words import STOP_WORDS
|
||||
from ...language import BaseDefaults, Language
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from ...language import Language, BaseDefaults
|
||||
from .stop_words import STOP_WORDS
|
||||
|
||||
|
||||
class CzechDefaults(BaseDefaults):
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from ...language import BaseDefaults, Language
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .punctuation import TOKENIZER_INFIXES, TOKENIZER_SUFFIXES
|
||||
from .stop_words import STOP_WORDS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .syntax_iterators import SYNTAX_ITERATORS
|
||||
from ...language import Language, BaseDefaults
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
|
||||
|
||||
class DanishDefaults(BaseDefaults):
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
from ...attrs import LIKE_NUM
|
||||
|
||||
|
||||
# Source http://fjern-uv.dk/tal.php
|
||||
_num_words = """nul
|
||||
en et to tre fire fem seks syv otte ni ti
|
||||
|
|
|
@ -1,8 +1,13 @@
|
|||
from ..char_classes import LIST_ELLIPSES, LIST_ICONS
|
||||
from ..char_classes import CONCAT_QUOTES, ALPHA, ALPHA_LOWER, ALPHA_UPPER
|
||||
from ..char_classes import (
|
||||
ALPHA,
|
||||
ALPHA_LOWER,
|
||||
ALPHA_UPPER,
|
||||
CONCAT_QUOTES,
|
||||
LIST_ELLIPSES,
|
||||
LIST_ICONS,
|
||||
)
|
||||
from ..punctuation import TOKENIZER_SUFFIXES
|
||||
|
||||
|
||||
_quotes = CONCAT_QUOTES.replace("'", "")
|
||||
|
||||
_infixes = (
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
from typing import Union, Iterator, Tuple
|
||||
from ...tokens import Doc, Span
|
||||
from ...symbols import NOUN, PROPN, PRON, VERB, AUX
|
||||
from typing import Iterator, Tuple, Union
|
||||
|
||||
from ...errors import Errors
|
||||
from ...symbols import AUX, NOUN, PRON, PROPN, VERB
|
||||
from ...tokens import Doc, Span
|
||||
|
||||
|
||||
def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Tuple[int, int, int]]:
|
||||
|
|
|
@ -2,10 +2,9 @@
|
|||
Tokenizer Exceptions.
|
||||
Source: https://forkortelse.dk/ and various others.
|
||||
"""
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
from ...symbols import ORTH, NORM
|
||||
from ...symbols import NORM, ORTH
|
||||
from ...util import update_exc
|
||||
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
|
||||
_exc = {}
|
||||
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES, TOKENIZER_INFIXES
|
||||
from ...language import BaseDefaults, Language
|
||||
from .punctuation import TOKENIZER_INFIXES, TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
|
||||
from .stop_words import STOP_WORDS
|
||||
from .syntax_iterators import SYNTAX_ITERATORS
|
||||
from ...language import Language, BaseDefaults
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
|
||||
|
||||
class GermanDefaults(BaseDefaults):
|
||||
|
|
|
@ -1,9 +1,18 @@
|
|||
from ..char_classes import LIST_ELLIPSES, LIST_ICONS, LIST_PUNCT, LIST_QUOTES
|
||||
from ..char_classes import CURRENCY, UNITS, PUNCT
|
||||
from ..char_classes import CONCAT_QUOTES, ALPHA, ALPHA_LOWER, ALPHA_UPPER
|
||||
from ..char_classes import (
|
||||
ALPHA,
|
||||
ALPHA_LOWER,
|
||||
ALPHA_UPPER,
|
||||
CONCAT_QUOTES,
|
||||
CURRENCY,
|
||||
LIST_ELLIPSES,
|
||||
LIST_ICONS,
|
||||
LIST_PUNCT,
|
||||
LIST_QUOTES,
|
||||
PUNCT,
|
||||
UNITS,
|
||||
)
|
||||
from ..punctuation import TOKENIZER_PREFIXES as BASE_TOKENIZER_PREFIXES
|
||||
|
||||
|
||||
_prefixes = ["``"] + BASE_TOKENIZER_PREFIXES
|
||||
|
||||
_suffixes = (
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import Union, Iterator, Tuple
|
||||
from typing import Iterator, Tuple, Union
|
||||
|
||||
from ...symbols import NOUN, PROPN, PRON
|
||||
from ...errors import Errors
|
||||
from ...symbols import NOUN, PRON, PROPN
|
||||
from ...tokens import Doc, Span
|
||||
|
||||
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
from ...symbols import ORTH, NORM
|
||||
from ...symbols import NORM, ORTH
|
||||
from ...util import update_exc
|
||||
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
|
||||
_exc = {
|
||||
"auf'm": [{ORTH: "auf"}, {ORTH: "'m", NORM: "dem"}],
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
from ...language import BaseDefaults, Language
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .stop_words import STOP_WORDS
|
||||
from ...language import Language, BaseDefaults
|
||||
|
||||
|
||||
class LowerSorbianDefaults(BaseDefaults):
|
||||
|
|
|
@ -1,13 +1,14 @@
|
|||
from typing import Optional, Callable
|
||||
from typing import Callable, Optional
|
||||
|
||||
from thinc.api import Model
|
||||
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from .stop_words import STOP_WORDS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .syntax_iterators import SYNTAX_ITERATORS
|
||||
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES, TOKENIZER_INFIXES
|
||||
from ...language import BaseDefaults, Language
|
||||
from .lemmatizer import GreekLemmatizer
|
||||
from ...language import Language, BaseDefaults
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .punctuation import TOKENIZER_INFIXES, TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
|
||||
from .stop_words import STOP_WORDS
|
||||
from .syntax_iterators import SYNTAX_ITERATORS
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
|
||||
|
||||
class GreekDefaults(BaseDefaults):
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
def get_pos_from_wiktionary():
|
||||
import re
|
||||
|
||||
from gensim.corpora.wikicorpus import extract_pages
|
||||
|
||||
regex = re.compile(r"==={{(\w+)\|el}}===")
|
||||
|
|
|
@ -1,6 +1,16 @@
|
|||
from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES, LIST_CURRENCY
|
||||
from ..char_classes import LIST_ICONS, ALPHA_LOWER, ALPHA_UPPER, ALPHA, HYPHENS
|
||||
from ..char_classes import CONCAT_QUOTES, CURRENCY
|
||||
from ..char_classes import (
|
||||
ALPHA,
|
||||
ALPHA_LOWER,
|
||||
ALPHA_UPPER,
|
||||
CONCAT_QUOTES,
|
||||
CURRENCY,
|
||||
HYPHENS,
|
||||
LIST_CURRENCY,
|
||||
LIST_ELLIPSES,
|
||||
LIST_ICONS,
|
||||
LIST_PUNCT,
|
||||
LIST_QUOTES,
|
||||
)
|
||||
|
||||
_units = (
|
||||
"km km² km³ m m² m³ dm dm² dm³ cm cm² cm³ mm mm² mm³ ha µm nm yd in ft "
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import Union, Iterator, Tuple
|
||||
from typing import Iterator, Tuple, Union
|
||||
|
||||
from ...symbols import NOUN, PROPN, PRON
|
||||
from ...errors import Errors
|
||||
from ...symbols import NOUN, PRON, PROPN
|
||||
from ...tokens import Doc, Span
|
||||
|
||||
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue