mirror of https://github.com/explosion/spaCy.git
Auto-format example
This commit is contained in:
parent
361554f629
commit
6f1438b5d9
|
@ -20,51 +20,48 @@ from spacy.util import minibatch, compounding
|
||||||
|
|
||||||
# training data
|
# training data
|
||||||
TRAIN_DATA = [
|
TRAIN_DATA = [
|
||||||
('Who is Shaka Khan?', {
|
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
|
||||||
'entities': [(7, 17, 'PERSON')]
|
("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}),
|
||||||
}),
|
|
||||||
('I like London and Berlin.', {
|
|
||||||
'entities': [(7, 13, 'LOC'), (18, 24, 'LOC')]
|
|
||||||
})
|
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
@plac.annotations(
|
@plac.annotations(
|
||||||
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
|
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
|
||||||
output_dir=("Optional output directory", "option", "o", Path),
|
output_dir=("Optional output directory", "option", "o", Path),
|
||||||
n_iter=("Number of training iterations", "option", "n", int))
|
n_iter=("Number of training iterations", "option", "n", int),
|
||||||
|
)
|
||||||
def main(model=None, output_dir=None, n_iter=100):
|
def main(model=None, output_dir=None, n_iter=100):
|
||||||
"""Load the model, set up the pipeline and train the entity recognizer."""
|
"""Load the model, set up the pipeline and train the entity recognizer."""
|
||||||
if model is not None:
|
if model is not None:
|
||||||
nlp = spacy.load(model) # load existing spaCy model
|
nlp = spacy.load(model) # load existing spaCy model
|
||||||
print("Loaded model '%s'" % model)
|
print("Loaded model '%s'" % model)
|
||||||
else:
|
else:
|
||||||
nlp = spacy.blank('en') # create blank Language class
|
nlp = spacy.blank("en") # create blank Language class
|
||||||
print("Created blank 'en' model")
|
print("Created blank 'en' model")
|
||||||
|
|
||||||
# create the built-in pipeline components and add them to the pipeline
|
# create the built-in pipeline components and add them to the pipeline
|
||||||
# nlp.create_pipe works for built-ins that are registered with spaCy
|
# nlp.create_pipe works for built-ins that are registered with spaCy
|
||||||
if 'ner' not in nlp.pipe_names:
|
if "ner" not in nlp.pipe_names:
|
||||||
ner = nlp.create_pipe('ner')
|
ner = nlp.create_pipe("ner")
|
||||||
nlp.add_pipe(ner, last=True)
|
nlp.add_pipe(ner, last=True)
|
||||||
# otherwise, get it so we can add labels
|
# otherwise, get it so we can add labels
|
||||||
else:
|
else:
|
||||||
ner = nlp.get_pipe('ner')
|
ner = nlp.get_pipe("ner")
|
||||||
|
|
||||||
# add labels
|
# add labels
|
||||||
for _, annotations in TRAIN_DATA:
|
for _, annotations in TRAIN_DATA:
|
||||||
for ent in annotations.get('entities'):
|
for ent in annotations.get("entities"):
|
||||||
ner.add_label(ent[2])
|
ner.add_label(ent[2])
|
||||||
|
|
||||||
# get names of other pipes to disable them during training
|
# get names of other pipes to disable them during training
|
||||||
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
|
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"]
|
||||||
with nlp.disable_pipes(*other_pipes): # only train NER
|
with nlp.disable_pipes(*other_pipes): # only train NER
|
||||||
optimizer = nlp.begin_training()
|
optimizer = nlp.begin_training()
|
||||||
for itn in range(n_iter):
|
for itn in range(n_iter):
|
||||||
random.shuffle(TRAIN_DATA)
|
random.shuffle(TRAIN_DATA)
|
||||||
losses = {}
|
losses = {}
|
||||||
# batch up the examples using spaCy's minibatch
|
# batch up the examples using spaCy's minibatch
|
||||||
batches = minibatch(TRAIN_DATA, size=compounding(4., 32., 1.001))
|
batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
|
||||||
for batch in batches:
|
for batch in batches:
|
||||||
texts, annotations = zip(*batch)
|
texts, annotations = zip(*batch)
|
||||||
nlp.update(
|
nlp.update(
|
||||||
|
@ -72,14 +69,15 @@ def main(model=None, output_dir=None, n_iter=100):
|
||||||
annotations, # batch of annotations
|
annotations, # batch of annotations
|
||||||
drop=0.5, # dropout - make it harder to memorise data
|
drop=0.5, # dropout - make it harder to memorise data
|
||||||
sgd=optimizer, # callable to update weights
|
sgd=optimizer, # callable to update weights
|
||||||
losses=losses)
|
losses=losses,
|
||||||
print('Losses', losses)
|
)
|
||||||
|
print("Losses", losses)
|
||||||
|
|
||||||
# test the trained model
|
# test the trained model
|
||||||
for text, _ in TRAIN_DATA:
|
for text, _ in TRAIN_DATA:
|
||||||
doc = nlp(text)
|
doc = nlp(text)
|
||||||
print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
|
print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
|
||||||
print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
|
print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
|
||||||
|
|
||||||
# save model to output directory
|
# save model to output directory
|
||||||
if output_dir is not None:
|
if output_dir is not None:
|
||||||
|
@ -94,11 +92,11 @@ def main(model=None, output_dir=None, n_iter=100):
|
||||||
nlp2 = spacy.load(output_dir)
|
nlp2 = spacy.load(output_dir)
|
||||||
for text, _ in TRAIN_DATA:
|
for text, _ in TRAIN_DATA:
|
||||||
doc = nlp2(text)
|
doc = nlp2(text)
|
||||||
print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
|
print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
|
||||||
print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
|
print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == "__main__":
|
||||||
plac.call(main)
|
plac.call(main)
|
||||||
|
|
||||||
# Expected output:
|
# Expected output:
|
||||||
|
|
Loading…
Reference in New Issue