Add a layer type for history features

This commit is contained in:
Matthew Honnibal 2017-10-03 12:43:09 +02:00
parent 8902df44de
commit 6aa6a5bc25
1 changed files with 22 additions and 0 deletions

View File

@ -21,6 +21,7 @@ from thinc.neural._classes.affine import _set_dimensions_if_needed
from thinc.api import FeatureExtracter, with_getitem
from thinc.neural.pooling import Pooling, max_pool, mean_pool, sum_pool
from thinc.neural._classes.attention import ParametricAttention
from thinc.neural._classes.embed import Embed
from thinc.linear.linear import LinearModel
from thinc.api import uniqued, wrap, flatten_add_lengths, noop
@ -212,6 +213,27 @@ class PrecomputableMaxouts(Model):
return Yfp, backward
def HistoryFeatures(nr_class, hist_size=8, nr_dim=8):
'''Wrap a model, adding features representing action history.'''
embed = Embed(nr_dim, nr_dim, nr_class)
ops = embed.ops
def add_history_fwd(vectors_hists, drop=0.):
vectors, hist_ids = vectors_hists
flat_hists, bp_hists = embed.begin_update(hist_ids.flatten(), drop=drop)
hists = flat_hists.reshape((hist_ids.shape[0],
hist_ids.shape[1] * flat_hists.shape[1]))
outputs = ops.xp.hstack((vectors, hists))
def add_history_bwd(d_outputs, sgd=None):
d_vectors = d_outputs[:, :vectors.shape[1]]
d_hists = d_outputs[:, vectors.shape[1]:]
bp_hists(d_hists.reshape((d_hists.shape[0]*hist_size,
int(d_hists.shape[1]/hist_size))), sgd=sgd)
return embed.ops.xp.ascontiguousarray(d_vectors)
return outputs, add_history_bwd
return wrap(add_history_fwd, embed)
def drop_layer(layer, factor=2.):
def drop_layer_fwd(X, drop=0.):
if drop <= 0.: