mirror of https://github.com/explosion/spaCy.git
Add a layer type for history features
This commit is contained in:
parent
8902df44de
commit
6aa6a5bc25
22
spacy/_ml.py
22
spacy/_ml.py
|
@ -21,6 +21,7 @@ from thinc.neural._classes.affine import _set_dimensions_if_needed
|
|||
from thinc.api import FeatureExtracter, with_getitem
|
||||
from thinc.neural.pooling import Pooling, max_pool, mean_pool, sum_pool
|
||||
from thinc.neural._classes.attention import ParametricAttention
|
||||
from thinc.neural._classes.embed import Embed
|
||||
from thinc.linear.linear import LinearModel
|
||||
from thinc.api import uniqued, wrap, flatten_add_lengths, noop
|
||||
|
||||
|
@ -212,6 +213,27 @@ class PrecomputableMaxouts(Model):
|
|||
return Yfp, backward
|
||||
|
||||
|
||||
def HistoryFeatures(nr_class, hist_size=8, nr_dim=8):
|
||||
'''Wrap a model, adding features representing action history.'''
|
||||
embed = Embed(nr_dim, nr_dim, nr_class)
|
||||
ops = embed.ops
|
||||
def add_history_fwd(vectors_hists, drop=0.):
|
||||
vectors, hist_ids = vectors_hists
|
||||
flat_hists, bp_hists = embed.begin_update(hist_ids.flatten(), drop=drop)
|
||||
hists = flat_hists.reshape((hist_ids.shape[0],
|
||||
hist_ids.shape[1] * flat_hists.shape[1]))
|
||||
outputs = ops.xp.hstack((vectors, hists))
|
||||
|
||||
def add_history_bwd(d_outputs, sgd=None):
|
||||
d_vectors = d_outputs[:, :vectors.shape[1]]
|
||||
d_hists = d_outputs[:, vectors.shape[1]:]
|
||||
bp_hists(d_hists.reshape((d_hists.shape[0]*hist_size,
|
||||
int(d_hists.shape[1]/hist_size))), sgd=sgd)
|
||||
return embed.ops.xp.ascontiguousarray(d_vectors)
|
||||
return outputs, add_history_bwd
|
||||
return wrap(add_history_fwd, embed)
|
||||
|
||||
|
||||
def drop_layer(layer, factor=2.):
|
||||
def drop_layer_fwd(X, drop=0.):
|
||||
if drop <= 0.:
|
||||
|
|
Loading…
Reference in New Issue