mirror of https://github.com/explosion/spaCy.git
Fix links to CLI docs
This commit is contained in:
parent
4fb5fb7218
commit
697d3d7cb3
|
@ -225,7 +225,7 @@ p
|
|||
p
|
||||
| Print a formatted, text-wrapped message with optional title. If a text
|
||||
| argument is a #[code Path], it's converted to a string. Should only
|
||||
| be used for interactive components like the #[+a("/docs/usage/cli") CLI].
|
||||
| be used for interactive components like the #[+a("/docs/api/cli") CLI].
|
||||
|
||||
+aside-code("Example").
|
||||
data_path = Path('/some/path')
|
||||
|
|
|
@ -535,7 +535,7 @@ p
|
|||
| #[+src(gh("spacy-dev-resources", "training/word_freqs.py")) word_freqs.py]
|
||||
| script from the spaCy developer resources. Note that your corpus should
|
||||
| not be preprocessed (i.e. you need punctuation for example). The
|
||||
| #[+a("/docs/usage/cli#model") #[code model] command] expects a
|
||||
| #[+a("/docs/api/cli#model") #[code model]] command expects a
|
||||
| tab-separated word frequencies file with three columns:
|
||||
|
||||
+list("numbers")
|
||||
|
@ -651,13 +651,13 @@ p
|
|||
| If your corpus uses the
|
||||
| #[+a("http://universaldependencies.org/docs/format.html") CoNLL-U] format,
|
||||
| i.e. files with the extension #[code .conllu], you can use the
|
||||
| #[+a("/docs/usage/cli#convert") #[code convert] command] to convert it to
|
||||
| #[+a("/docs/api/cli#convert") #[code convert]] command to convert it to
|
||||
| spaCy's #[+a("/docs/api/annotation#json-input") JSON format] for training.
|
||||
|
||||
p
|
||||
| Once you have your UD corpus transformed into JSON, you can train your
|
||||
| model use the using spaCy's
|
||||
| #[+a("/docs/usage/cli#train") #[code train] command]:
|
||||
| #[+a("/docs/api/cli#train") #[code train]] command:
|
||||
|
||||
+code(false, "bash").
|
||||
python -m spacy train [lang] [output_dir] [train_data] [dev_data] [--n_iter] [--parser_L1] [--no_tagger] [--no_parser] [--no_ner]
|
||||
|
|
|
@ -28,7 +28,7 @@ p
|
|||
| and walk you through generating the meta data. You can also create the
|
||||
| meta.json manually and place it in the model data directory, or supply a
|
||||
| path to it using the #[code --meta] flag. For more info on this, see the
|
||||
| #[+a("/docs/usage/cli/#package") #[code package] command] documentation.
|
||||
| #[+a("/docs/api/cli#package") #[code package]] command documentation.
|
||||
|
||||
+aside-code("meta.json", "json").
|
||||
{
|
||||
|
|
|
@ -77,8 +77,8 @@ p
|
|||
p
|
||||
| To make the model more convenient to deploy, we recommend wrapping it as
|
||||
| a Python package, so that you can install it via pip and load it as a
|
||||
| module. spaCy comes with a handy #[+a("/docs/usage/cli#package") CLI command]
|
||||
| to create all required files and directories.
|
||||
| module. spaCy comes with a handy #[+a("/docs/api/cli#package") #[code package]]
|
||||
| CLI command to create all required files and directories.
|
||||
|
||||
+code(false, "bash").
|
||||
python -m spacy package /home/me/data/en_technology /home/me/my_models
|
||||
|
|
Loading…
Reference in New Issue