mirror of https://github.com/explosion/spaCy.git
Improve GPU usage for train-with-config (#5330)
* Adjust for no ops in Optimizer * Fix gpu in train-from-config * Update train-from-config script * Fix parser * Fix GPU efficiency of padding backprop
This commit is contained in:
parent
42364dcd9f
commit
6918d99b6c
|
@ -1,4 +1,5 @@
|
|||
from typing import Optional, Dict, List, Union, Sequence
|
||||
from timeit import default_timer as timer
|
||||
from pydantic import BaseModel, FilePath
|
||||
import plac
|
||||
import tqdm
|
||||
|
@ -146,30 +147,29 @@ def train_from_config_cli(
|
|||
if output_path is not None and not output_path.exists():
|
||||
output_path.mkdir()
|
||||
|
||||
try:
|
||||
train_from_config(
|
||||
config_path,
|
||||
{"train": train_path, "dev": dev_path},
|
||||
output_path=output_path,
|
||||
meta_path=meta_path,
|
||||
raw_text=raw_text,
|
||||
)
|
||||
except KeyboardInterrupt:
|
||||
msg.warn("Cancelled.")
|
||||
train_from_config(
|
||||
config_path,
|
||||
{"train": train_path, "dev": dev_path},
|
||||
output_path=output_path,
|
||||
meta_path=meta_path,
|
||||
raw_text=raw_text,
|
||||
)
|
||||
|
||||
|
||||
def train_from_config(
|
||||
config_path, data_paths, raw_text=None, meta_path=None, output_path=None,
|
||||
):
|
||||
msg.info(f"Loading config from: {config_path}")
|
||||
config = util.load_config(config_path, create_objects=True)
|
||||
config = util.load_config(config_path, create_objects=False)
|
||||
nlp_config = config["nlp"]
|
||||
use_gpu = config["training"]["use_gpu"]
|
||||
if use_gpu >= 0:
|
||||
msg.info("Using GPU")
|
||||
util.use_gpu(use_gpu)
|
||||
else:
|
||||
msg.info("Using CPU")
|
||||
config = util.load_config(config_path, create_objects=True)
|
||||
msg.info("Creating nlp from config")
|
||||
nlp_config = util.load_config(config_path, create_objects=False)["nlp"]
|
||||
nlp = util.load_model_from_config(nlp_config)
|
||||
optimizer = config["optimizer"]
|
||||
training = config["training"]
|
||||
|
@ -240,12 +240,17 @@ def create_evaluation_callback(nlp, optimizer, corpus, cfg):
|
|||
nlp, gold_preproc=cfg["gold_preproc"], ignore_misaligned=True
|
||||
)
|
||||
)
|
||||
n_words = sum(len(ex.doc) for ex in dev_examples)
|
||||
start_time = timer()
|
||||
scorer = nlp.evaluate(dev_examples)
|
||||
end_time = timer()
|
||||
wps = n_words / (end_time - start_time)
|
||||
scores = scorer.scores
|
||||
# Calculate a weighted sum based on score_weights for the main score
|
||||
weights = cfg["score_weights"]
|
||||
weighted_score = sum(scores[s] * weights.get(s, 0.0) for s in weights)
|
||||
return weighted_score, scorer.scores
|
||||
scores["speed"] = wps
|
||||
return weighted_score, scores
|
||||
|
||||
return evaluate
|
||||
|
||||
|
@ -346,13 +351,13 @@ def setup_printer(training, nlp):
|
|||
|
||||
def print_row(info):
|
||||
losses = [
|
||||
"{0:.2f}".format(info["losses"].get(pipe_name, 0.0))
|
||||
"{0:.2f}".format(float(info["losses"].get(pipe_name, 0.0)))
|
||||
for pipe_name in nlp.pipe_names
|
||||
]
|
||||
scores = [
|
||||
"{0:.2f}".format(info["other_scores"].get(col, 0.0)) for col in score_cols
|
||||
"{0:.2f}".format(float(info["other_scores"].get(col, 0.0))) for col in score_cols
|
||||
]
|
||||
data = [info["step"]] + losses + scores + ["{0:.2f}".format(info["score"])]
|
||||
data = [info["step"]] + losses + scores + ["{0:.2f}".format(float(info["score"]))]
|
||||
msg.row(data, widths=table_widths, aligns=table_aligns)
|
||||
|
||||
return print_row
|
||||
|
|
|
@ -79,23 +79,14 @@ def _backprop_precomputable_affine_padding(model, dY, ids):
|
|||
# for b in range(nB):
|
||||
# for f in range(nF):
|
||||
# if ids[b, f] < 0:
|
||||
# d_pad[0, f] += dY[b]
|
||||
# d_pad[f] += dY[b]
|
||||
#
|
||||
# Which can be rewritten as:
|
||||
#
|
||||
# for b in range(nB):
|
||||
# d_pad[0, ids[b] < 0] += dY[b]
|
||||
#
|
||||
# I don't know how to avoid the loop without building a whole array :(.
|
||||
# Cursed numpy.
|
||||
#
|
||||
# Note by Sofie: rewritten to longer loop because "CuPy only supports slices that consist of one boolean array."
|
||||
d_pad = model.ops.alloc((1, nF, nO, nP))
|
||||
for b in range(nB):
|
||||
for f in range(nF):
|
||||
if ids[b, f] < 0:
|
||||
d_pad[0, f] += dY[b]
|
||||
return d_pad
|
||||
# (ids < 0).T @ dY
|
||||
mask = model.ops.asarray(ids < 0, dtype="f")
|
||||
d_pad = model.ops.gemm(mask, dY.reshape(nB, nO*nP), trans1=True)
|
||||
return d_pad.reshape((1, nF, nO, nP))
|
||||
|
||||
|
||||
def init(model, X=None, Y=None):
|
||||
|
|
|
@ -216,6 +216,7 @@ cdef class Parser:
|
|||
# expand our model output.
|
||||
self._resize()
|
||||
model = self.model.predict(docs)
|
||||
W_param = model.vec2scores.get_param("W")
|
||||
weights = get_c_weights(model)
|
||||
for state in batch:
|
||||
if not state.is_final():
|
||||
|
|
|
@ -784,7 +784,6 @@ VECTORS_KEY = "spacy_pretrained_vectors"
|
|||
|
||||
|
||||
def create_default_optimizer():
|
||||
ops = get_current_ops()
|
||||
learn_rate = env_opt("learn_rate", 0.001)
|
||||
beta1 = env_opt("optimizer_B1", 0.9)
|
||||
beta2 = env_opt("optimizer_B2", 0.999)
|
||||
|
@ -798,7 +797,6 @@ def create_default_optimizer():
|
|||
beta1=beta1,
|
||||
beta2=beta2,
|
||||
eps=eps,
|
||||
ops=ops,
|
||||
grad_clip=grad_clip,
|
||||
L2_is_weight_decay=L2_is_weight_decay,
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue